FYZIKÁLNĚ A TVAROVĚ ORTOTROPNÍ DESKY

Pokyny k sestavování vstupních fyzikálních dat u mostních, stropních a základových desek s různými průřezy ve dvou vzájemně kolmých směrech

Prof. Ing. Dr. techn. Vladimír Kolář, DrSc.
Copyright: FEM consulting s.r.o.
1993
<table>
<thead>
<tr>
<th>Obsah</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ÚČEL TEXTU ..</td>
</tr>
<tr>
<td>2 METODA ..</td>
</tr>
<tr>
<td>3 HLAVNÍ ZÁSADA ŘEŠENÍ ..</td>
</tr>
<tr>
<td>4 SLOŽKY NAPĚTÍ U FYZIKÁLNĚ ORTOTROPNÍ DESKY ..</td>
</tr>
<tr>
<td>5 VNITŘNÍ SÍLY U FYZIKÁLNĚ ORTOTROPNÍ DESKY ..</td>
</tr>
<tr>
<td>5.1 TECHNICKÁ TEORIE DESEK BEZ VLIJU PŘÍČNÉHO SMYKU ...</td>
</tr>
<tr>
<td>5.2 DESKY S VLIadem PŘÍČNÉHO SMYKU ..</td>
</tr>
<tr>
<td>6 TVAROVĚ ORTOTROPNÍ DESKY ..</td>
</tr>
<tr>
<td>6.1 HLAVNÍ ZÁSADY PŘEVODU NA FYZIKÁLNÍ ORTOTROPII ...</td>
</tr>
<tr>
<td>6.2 JEDNODUCHÉ TYPY ORTOTROPNÍCH DESEK ...</td>
</tr>
<tr>
<td>6.2.1 Energetická ekvivalence průřezových charakteristik ...</td>
</tr>
<tr>
<td>6.2.2 Ohybové a kroutící momenty ..</td>
</tr>
<tr>
<td>6.2.2.1 Deska bez příčné kontrakce ..</td>
</tr>
<tr>
<td>6.2.2.2 Desky s příčnou kontrakcí ..</td>
</tr>
<tr>
<td>6.2.3 Posouvající síly a reakce ...</td>
</tr>
<tr>
<td>6.3 DESKY S VLIadem PŘÍČNÉHO SMYKU ..</td>
</tr>
<tr>
<td>6.4 KOMŮRKOVÉ PRŮŘEZY ...</td>
</tr>
<tr>
<td>6.4.1 Tlustostěnné komůrkové průřezy – vylehčené desky ...</td>
</tr>
<tr>
<td>6.4.2 Tenkostěnné komůrkové průřezy ...</td>
</tr>
<tr>
<td>6.4.3 Srovnávací příklad ...</td>
</tr>
<tr>
<td>6.5 ŽALUZIOVÉ DESKY ..</td>
</tr>
<tr>
<td>6.6 JINÉ TYPY DESEK ..</td>
</tr>
</tbody>
</table>
1 Účel textu

Účelem textu je podat návod k výpočtu těch vstupních údajů ortotropních desek, které charakterizují jejich fyzikální vlastnosti, tj. ohybovou, torsní a smykovou tuhost. Tyto vlastnosti jsou v programech popsány maticí fyzikálních konstant \(D = [D_{ik}] \), takže jde v podstatě o výpočet jejich členů \(D_{ik} \).

2 Metoda

Předpokládá se řešení metodou konečných prvků v její nejrozšířenější deformační variantě s neznámými parametry deformace geometrické povahy. Matici \(D \) spojuje vzájemně určité statické veličiny \(\sigma \) (složky napětí, nebo výslednice po průřezu – tzv. vnitřní síly desky) s příslušnými geometrickými veličinami \(\varepsilon \) složkami deformace, nebo u desek s těmi derivacemi průhybové plochy \(w \), na nichž složky deformace závisí):

\[
\sigma = D \varepsilon .
\]

Matici \(D \) se může zadat pro každý prvek nebo skupinu prvků zvlášť. Tak lze řešit desky fyzikálně po prvcích nehomogenní nebo tvarově po prvcích proměnné, čímž lze vyjádřit dosti přibližně i spojité proměnné u náběhu a pod. úprav.

Protože text má sloužit k rychlé orientaci uživatelů, je zpracován v zásadě bez odkazů na literaturu.

3 Hlavní zásada řešení

Současné programy a metody řešení ortotropních desek řeší v podstatě jen tzv. fyzikálně ortotropní deskové (dvojrozměrné) kontinuum vyplněné body ve střednicové rovině desky \((x, y) \), tj. v rovině \(z = 0 \). Těleso reálné desky je omezeno horním a dolním licem \(z = \pm h/2 \), je-li \(h \) tloušťka desky, případně proměnná, tj. \(h(x,y) \). Předpokládá se, že hmotná normála k střednicové rovině, tj. např. body o souřadnicích \((x_1, y_1, z) \), -h/2 \(\leq z \leq h/2 \) zůstává i po průhybu desky přímá, nezkřivená. V klasické Kirchhoffově teorii desek zůstává dokonce kolmá k ohybové ploše desky \(w(x, y) \); respektujieme-li vliv příčného smyku \(\tau_{xz}, \tau_{yz} \) na úhlové změny \(\gamma_{xz}, \gamma_{yz} \), pak je tato normála obecně natočená kolem osy \(\varphi_x, \varphi_y \) (x, y). I v tomto obecnějším případě máme pro popis deformace deskového kontinua (Boltzmannovského u Kirchhoffovské desky a Cosseratovského u Mindlinovské desky) jen tři funkce dvou proměnných

\[
(2) \quad w(x, y), \quad \varphi_x (x, y), \quad \varphi_y (x, y).
\]

U reálného trojrozměrného tělesa dané deskové konstrukce, např. komůrkového průřezu, je deformace úplně popsána třemi funkcemi tří proměnných

\[
(3) \quad u(x, y, z), \quad v(x, y, z), \quad w(x, y, z),
\]

z nichž lze odvodit také úplný popis její napjatosti \(\sigma \). Abychom mohli takové těleso řešit jako desku, musíme zavést nějaké geometrické předpoklady, které umožňují z funkcí (2) zjistit funkce (3). Např. nej jednodušší Kirchhoffův předpoklad, uvedený výše, má tento tvar (obr. 1):
Fyzikálně a tvarově ortotropní desky

\[w(x, y, z) \rightarrow w(x, y) = w(x, y, 0) \]
\[\varphi_x(x, y) = \frac{\partial w(x, y)}{\partial x} \]
\[\varphi_y(x, y) = -\frac{\partial w(x, y)}{\partial y} \]
\[u(x, y, z) = -z \frac{\partial w(x, y)}{\partial x} \]
\[v(x, y, z) = -z \frac{\partial w(x, y)}{\partial y} \]

(4)

K popisu funkcí (3) stačí tu jediná funkce dvou proměnných \(w(x, y) \).

Z toho plyne hlavní zásada řešení resp. převodu dané konstrukce na desku a naopak využití výsledků (tisků) získaných deskovým výpočtem pro dimenzování resp. posuzování dané konstrukce. Mezi funkcemi (2) a (3) musí být jednoznacná relace (nejjednodušší je typu (4)). Potom už není problém stanovit obdobné relace mezi vnitřními silami a konstrukcí a její deskové modelu.

V podstatě jde tedy o redukci trojrozměrné úlohy na dvojrozměrnou.

4 Složky napětí u fyzikálně ortotropní desky

Pro stručnost se omezíme na nejčastější případ, kdy souřadnicové osy \(x, y \) jsou zvoleny v osách ortotropie, což se vždy doporučuje pro zjednodušení zápisu. Základem jsou obecné vztahy mezi složkami deformace a složkami napětí v primárním tvaru \(\boldsymbol{\epsilon} = \mathbf{D}\boldsymbol{\sigma} \):

\[
\begin{bmatrix}
\varepsilon_x \\
\varepsilon_y \\
\varepsilon_z \\
\gamma_{yz} \\
\gamma_{zx} \\
\gamma_{xy}
\end{bmatrix}
=
\begin{bmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33} \\
0 & a_{44} & a_{45} \\
a_{51} & a_{52} & a_{53} \\
a_{61} & a_{62} & a_{63}
\end{bmatrix}
\begin{bmatrix}
\sigma_x \\
\sigma_y \\
\sigma_z \\
\tau_{yz} \\
\tau_{zx} \\
\tau_{xy}
\end{bmatrix}
\]

(5)

Zavedeme tyto tzv. technické konstanty:

Tři moduly pružnosti (Youngovy):

\[E_1 = \frac{1}{a_{11}}, \quad E_2 = \frac{1}{a_{22}}, \quad E_3 = \frac{1}{a_{33}} \].

(6)

Tři smykové moduly pružnosti (Lamého):

\[G_{23} = \frac{1}{a_{44}}, \quad G_{31} = \frac{1}{a_{55}}, \quad G_{12} = \frac{1}{a_{66}} \].

(7)

Šest součinitelů příčné konstrukce (Poissonovy) \(\mu_k \) pomocí těchto vztahů:
Fyzikálně a tvarově ortotropní desky

\[a_{12} = -\mu_{12} / E_1 = a_{21} = -\mu_{21} / E_2 \]
\[a_{13} = -\mu_{13} / E_1 = a_{31} = -\mu_{31} / E_3 \]
\[a_{23} = -\mu_{23} / E_2 = a_{32} = -\mu_{32} / E_3 \]

Identity \equiv plynou ze symetrie \(a_{k} = a_{ki} \), takže z devíti konstant typu \(E, \mu \) je jen šest vzájemně nezávislých, což spolu se třemi konstantami \(G \) tvoří devíti konstant typu \(E, G, \mu \), které jsou nutné a stačí k popisu fyzikálních vlastností ortotropní látky uvažovaného typu. Osážení \(x, y, z \) přísluší indexům 1, 2, 3. Součinitel \(\mu_{ik} \) je roven poměrné působící kontrakci ve směru \(i \), při rahu \(\sigma_{k} = E_{2} \) ve směru \(k \). Indexy u smykových modulů lze zamínit: \(G_{ik} = G_{ki} \).

Fyzikální zákon (5) s technickými konstantami lze pro pěčetnost rozepsat zvlášť pro normální a smykové složky (k tomuto rozpadu dojde jen v případě ortotropie):

\[(5a) \]

\[
\begin{bmatrix}
\epsilon_x \\
\epsilon_y \\
\epsilon_z
\end{bmatrix}
= \begin{bmatrix}
\frac{1}{E_1} & -\mu_{12} / E_1 & -\mu_{13} / E_1 \\
-\mu_{21} / E_2 & \frac{1}{E_2} & -\mu_{23} / E_2 \\
-\mu_{31} / E_3 & -\mu_{32} / E_3 & \frac{1}{E_3}
\end{bmatrix}
\begin{bmatrix}
\sigma_x \\
\sigma_y \\
\sigma_z
\end{bmatrix}
\]

Matice \(D^{-1} \) má v každém řádku týž modul \(E \). Je symetrická, takže se nezmění transpozicí. Lze tedy zapsat též tvar se stejnými moduly \(E \) ve sloupcích:

\[(5b) \]

\[
\begin{bmatrix}
\epsilon_x \\
\epsilon_y \\
\epsilon_z
\end{bmatrix}
= \begin{bmatrix}
\frac{1}{E_1} & -\mu_{21} / E_1 & -\mu_{31} / E_1 \\
-\mu_{12} / E_2 & \frac{1}{E_2} & -\mu_{32} / E_2 \\
-\mu_{13} / E_3 & -\mu_{23} / E_3 & \frac{1}{E_3}
\end{bmatrix}
\begin{bmatrix}
\sigma_x \\
\sigma_y \\
\sigma_z
\end{bmatrix}
\]

V úvahách a výpočtech používáme vždy tvar, který je v daném případě výhodnější, častější to bývá tvar (5a).

U smykových složek je matice fyzikálních konstant diagonální:

\[(5c) \]

\[
\gamma_{yz} = \begin{bmatrix}
1 / G_{23} & 0 & 0 \\
0 & 1 / G_{31} & 0 \\
0 & 0 & 1 / G_{12}
\end{bmatrix}
\begin{bmatrix}
\tau_{yz} \\
\tau_{zx} \\
\tau_{xy}
\end{bmatrix}, \quad \gamma = D_{\gamma}^{-1} \tau.
\]

Je tedy snadné zapsat i obrácený vztah:

\[(5d) \]

\[
\tau = D_{\gamma} \gamma, \quad D_{\gamma} = \begin{bmatrix}
G_{23} & 0 & 0 \\
0 & G_{31} & 0 \\
0 & 0 & G_{12}
\end{bmatrix}
\]
Obrácený vztah k (5a) je v technických konstantách méně přehledný; U ortotropních desek se však značně zjednoduší, protože se vyjde ze základního statického předpokladu deskové teorie:

\[
\sigma_z(x, y, z) \equiv 0 .
\]

V tomto případě se vztah (5a) rozpadne na dva jednodušší:

\[
\begin{bmatrix}
\varepsilon_x \\
\varepsilon_y \\
\varepsilon_z
\end{bmatrix} =
\begin{bmatrix}
\frac{1}{E_1} - \frac{\mu_{12}}{E_1} & -\frac{\mu_{13}}{E_1} & 0 \\
-\frac{\mu_{13}}{E_1} & \frac{1}{E_2} & 0 \\
0 & 0 & \frac{1}{G_{12}}
\end{bmatrix}
\begin{bmatrix}
\sigma_x \\
\sigma_y \\
\sigma_z
\end{bmatrix}.
\]

(5f)

\[
\begin{bmatrix}
\varepsilon_x \\
\varepsilon_y \\
\varepsilon_z
\end{bmatrix} =
\begin{bmatrix}
-\frac{\mu_{31}}{E_3} - \frac{\mu_{32}}{E_3} & 0 & 0 \\
0 & \frac{1}{E_3} & 0 \\
0 & 0 & \frac{1}{G_{12}}
\end{bmatrix}
\begin{bmatrix}
\sigma_x \\
\sigma_y \\
\sigma_z
\end{bmatrix}.
\]

(5g)

Složku \varepsilon_z můžeme považovat za nepodstatnou a z dalších úvah ji vynecháme což platí i pro ortotropii. Na rozdíl od isotropie lze dokonce definovat materiál s nenulovou příčnou kontrakcí v rovině \((x, y) \), ale s nulovými \(\mu_{31}, \mu_{32} \), nebo s \(E_3 \to \infty \) a splnit přesně podmínku \(\varepsilon_z \equiv 0 \) při \(\sigma_z \equiv 0 \). Nemá to však praktický výnam.

Vztah (5f) lze již snadno invertovat, čímž dospíváme k úplné relaci \(\sigma = D \varepsilon \) typu (5,1) = (5,5) (5,1) mající u desek tvar (9), uspořádáme-li složky tak, jak je to u desek účelné:

\[
\begin{bmatrix}
\sigma_x \\
\sigma_y \\
\tau_{xy} \\
\tau_{xz} \\
\tau_{yz}
\end{bmatrix} =
\begin{bmatrix}
\frac{E_1}{1-\mu_{12} \mu_{21}} & \frac{\mu_{21} E_1}{1-\mu_{12} \mu_{21}} & 0 \\
\frac{\mu_{12} E_2}{1-\mu_{12} \mu_{21}} & \frac{1-\mu_{12} \mu_{21}}{E_2} & 0 \\
0 & 0 & G_{12}
\end{bmatrix}
\begin{bmatrix}
\varepsilon_x \\
\varepsilon_y \\
\gamma_{xy} \\
\gamma_{xz} \\
\gamma_{yz}
\end{bmatrix}.
\]

(9)

5 Vnitřní síly u fyzikálně ortotropní desky

5.1 **Technická teorie desek bez vlivu příčného smyku**

Jde o tzv. klasickou Kirchhofovu teorii tenkých desek, založenou na vztazích (4) a platnou orientačně v mezech

\[
|w_{ns}| \leq \frac{L}{C}, \quad C = 100 ,
\]

(10)

\[
h \leq \frac{L}{C}.
\]

(11)

kde značí:
Fyzikálně a tvarově ortotropní desky

\[w_m \quad \text{extrémní průhyb desky}, \]
\[h \quad \text{- tloušťku desky}, \]
\[L \quad \text{- charakteristický půdorysný rozměr desky}, \]
\[L = \text{průměr kruhové desky}, L = \text{menší strana obdélníkové či kosodélníkové desky apod.} \]

Následky nesplnění (10):
Ve střednicové rovině desky začnou vznikat podstatná napětí, k deskové napjatosti se přičítá stěnová (rovinná) napjatost. Jde o desky s velkými průhyby, geometricky nelineární. V limitě \(h \to 0 \) vznikají jen tahová napětí, deska přechází v taženou membránu (fólie pneumatických staveb, prostorová geometricky nelineární úloha).

Následky nesplnění (11):
Pro \(h > L/5 \) nastává přechod k tlustým deskám s výrazným vlivem příčného smyku na celkovou energii, deformaci a napjatost desky, viz odst. 5.2 a 6.3.

Při platnosti (10), (11) zavedeme tyto vnitřní síly: Ohybové momenty (index = směr závěsu) v [Nm/m]:

\[(12) \quad M_x = \int \sigma_x z \, d z, \quad M_y = \int \sigma_y z \, d z. \]

Kroučící momenty v [Nm/m]:

\[(13) \quad M_{xy} = M_{yx} = \int \tau_{xy} z \, d z. \]

Posouvající síly v [N/m]:

\[(14) \quad T_x = \int \tau_{xz} d z, \quad T_y = \int \tau_{yz} d z. \]

Integruje se po tloušťce desky v intervalu \(-h/2 \leq z \leq h/2\). S použitím hypotézy (4), geometrických vztahů

\[(15) \quad \varepsilon_x = \partial u / \partial x, \quad \varepsilon_y = \partial v / \partial y, \quad \gamma_{xy} = \partial u / \partial y + \partial v / \partial z \]

fyzikální vazby (9) a podmínek momentové rovnováhy prvku desky kolem osy \(x \) a \(y \) vyjde vztah (1) ve tvaru:

\[(16) \quad \begin{bmatrix} M_x \\ M_y \\ M_{xy} \\ T_x \\ T_y \end{bmatrix} = - \begin{bmatrix} D_{11} & D_{12} & 0 \\ D_{21} & D_{22} & 0 \\ 0 & 0 & D_{33} \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} w_{xx} \\ w_{yy} \\ 2w_{xy} \\ w_{xxx} \\ w_{yyyy} \end{bmatrix}. \]

s těmito členy maticí tuhosti \(D \):

Ohybové tuhosti:
Fyzikálně a tvarově ortotropní desky

\[(17) \quad D_{11} = \frac{E_1 h^3}{12 (1 - \mu_{12} \mu_{21})}, \quad D_{22} = \frac{E_2 h^3}{12 (1 - \mu_{12} \mu_{21})}. \]

Kontrakční tuhost:

\[(18) \quad D_{12} = \mu_{21} \quad D_{11} = D_{21} = \mu_{12} \quad D_{22}. \]

Torsní tuhost:

\[(19) \quad D_{33} = G_{12} \frac{h^3}{12}. \]

Smíšená tuhost:

\[(20) \quad D_3 = 2D_{33} + D_{12} = 2D_{33} + D_{21}. \]

Celkem potřebujeme pro matrici \(D \) pět údajů: \(h, E_1, E_2, G_{12}, \mu_{12} \), druhý součinitel příčné kontrakce ve směru \(x \) při roztažení ve směru \(y \) je

\[(21) \quad \mu_{21} = \mu_{12} \frac{E_2}{E_1} = \mu_{12} \frac{D_{22}}{D_{11}}. \]

Tento počet lze snížit na čtyři, jestliže předpokládáme, že pro smykový modul \(G_{12} \) platí obdobná relace jako u isotropie – viz dále (39), ale pro geometrické průměry (jiné odvození podal již M.T. Huber):

\[(22) \quad G_{12} = \frac{\sqrt{E_1 E_2}}{2 (1 + \sqrt{\mu_{12} \mu_{21}})}. \]

Pak není torsní tuhost \(D_{33} \) nezávislou konstantou, ale je podle (19) a (17),

\[(23) \quad D_{33} = \frac{1}{2} (1 - \sqrt{\mu_{12} \mu_{21}}) \sqrt{D_{11} D_{22}}, \]

což lze pomocí (21) zapsat též v těchto tvarech:

\[
\begin{aligned}
D_{33} &= \frac{1}{2} (1 - \mu_{12}) \sqrt{\frac{D_{22}}{D_{11}}} \sqrt{D_{11} D_{22}}, \\
D_{33} &= \frac{1}{2} (1 - \mu_{21}) \sqrt{\frac{D_{11}}{D_{22}}} \sqrt{D_{11} D_{22}}.
\end{aligned}
\]

Výraz (20) je součinitelem při smíšené derivaci v základní deskové rovnici

\[(25) \quad D_{11} w_{xxx} + 2D_3 w_{xyy} + D_{22} w_{yyyy} = p \]

a je směrodatný pro tzv. druh ortotropie, určený konstantou.
Fyzikálně a tvarově ortotropní desky

\[\kappa = \frac{D_3}{\sqrt{D_{11} D_{22}}} \]

Ve stavební praxi je obvyklý také druh \(0 \leq \kappa < 1 \) nebo i 2. druh \(\kappa = 1 \), který lze redukovat na isotropní řešení. 3. druh \(\kappa > 1 \) se může vyskytnout jen vzácně u ocelových desek s torsně tuhými uzavřenými žebry.

Konstantu ortotropie \(\kappa \) lze u některých druhů desek považovat za primární, prakticky ověřený údaj, který reprezentuje smíšenou tuhost desky. Potom ke z (20) a (23) určit kontrakční tuhost ve tvaru

\[D_{12} = D_3 - 2D_{33} = (\kappa - 1 + \sqrt{\mu_{12} \mu_{21}}) \sqrt{D_{11} D_{22}} \]

V běžném případě \(\kappa = 1 \) je

\[D_{12} = \sqrt{\mu_{12} \mu_{21}} \sqrt{D_{11} D_{22}} \] (isotropie \(D_{12} = \mu D_{11} \)).

Reakce desky \(Q_x, Q_y \) jsou rovny posouvajícím sílám \(T_x, T_y \) (tak jako u nosníků) jen když jsou na okraji kroučicí momenty \(M_{xy} \) nulové (např. na dokonale vetknutém okraji). Obecně (např. na prostě podepřeném okraji) nutno přičíst doplněk od kroucení:

\[Q_m = T_m + \partial M_{mn} / \partial n \]

kde \(m \perp n \) je buď \(x \perp y \) nebo \(y \perp x \) nebo libovolný jiný směr okraje \(n \) s normálou \(m \). Nejsou-li programem reakce tištěny, vypočítá se z tištěných hodnot, příčemž derivace se zjistí přibližně ze dvou sousedních hodnot, např. ve sledu ekvidistantních hraničních bodů 1, 2, 3 při kroku \(d \):

\[Q_x (2) = T_x (2) + [M_{xy} (3) - M_{xy} (1)] / 2d \]

5.2 Desky s vlivem příčného smyku

V klasické teorii desek podle předepslého odst. se neuplatní smykové moduly \(G_{13}, G_{23} \) z (9), protože posouvající síly \((14) \) se zjišťují z podmínek momentové rovnováhy prvku, což vede na poslední dva řádky matice (16). U tlustých desek, přibližně v rozsahu

\[L / 5 < h < L \]

dochází ke zkosení \(\gamma \) pravého úhlu mezi hmotnou normálou a střednicovou rovinou vlivem příčného smyku \(\tau_{xy}, \tau_{yz} \) a z hypotézy (4) odpadne 2. a 3. řádek. Máme pak tři nezávislé funkce \(w, \varphi_x, \varphi_y \) podle (2). V tomto případě se uplatní vztahy

\[\gamma_{xy} = w_x + \varphi_y \]
\[\gamma_{yz} = w_y - \varphi_x \]

a 4. a 5. řádek matice (9), takže místo matice (16) pracujeme s maticí:
Fyzikálně a tvarově ortotropní desky

\[
\begin{bmatrix}
M_x \\
M_y \\
M_{xy} \\
T_x \\
T_y
\end{bmatrix} = \begin{bmatrix}
D_{11} & D_{12} & 0 \\
D_{21} & D_{22} & 0 \\
0 & 0 & D_{33} \\
0 & 0 & D_{44} \\
0 & 0 & D_{55}
\end{bmatrix} \begin{bmatrix}
w_{xx} \\
w_{yy} \\
w_{xy} \\
w_{x} + \varphi_y \\
w_{y} - \varphi
\end{bmatrix}
\]

s novými členy, které v nejednodušším případě konstantního příčného smyku po tloušťce desky \(h \) mají tvar:

\[
D_{44} = G_{13} \ h, \quad D_{55} = G_{23} \ h,
\]

takže k pěti údajům \(h, E_1, E_2, G_{12}, \mu_{12} \) přistupují dva další: \(G_{13}, G_{23} \), celkem sedm údajů pro výpočet vstupních dat \(D \).

6 Tvarově ortotropní desky

6.1 Hlavní zásady převodu na fyzikální ortotropii

Některé mostní, stropní, základové aj. konstrukce se podobají deskám ve smyslu hypotézy (11), tj. jejich celková „tloušťka“ \(h \) je malá vzhledem k půdorysným rozměrům \(L \). Při tom však jde o tělesa obecnějšího tvaru, např. žebrované desky, žaluziové desky z prefabrikátů, desky vylehčené komůrkami, desky s různou měkkou i tuhou výztuží, např. se zabetonovanými i nosníky, vinovky, příhradové desky apod. Jen velmi zřídka je celková ohybová tuhost těchto útvarů v podélém směru \(x \) i příčném směru \(y \) stejná, zpravidla se tyto tuhosti značně až řádově liší a to ne vlivem různých modulů \(E_1, E_2 \), ale vlivem různého průřezu rovinami \(x = \) konstanta. Jde tedy o tvarové (ne fyzikálně) ortotropní desky ve smyslu tvarové resp. technické ortotropie. Pro vyšetření globálního chování těchto desek (bez detailní analýzy napětí v okolí staticky, geometricky či fyzikálně singulárních bodů aj. nepravidelnými skutečnými prostorovou povahou útvaru) lze použít metod a programů, zpracovaných pro fyzikálně ortotropní desky za těchto předpokladů:

a) Z deskové ohybové plochy \(w \) (nebo ze tří funkcí (2) u desek s vívem smyku) musí být jednoznačně odvoditelné složky posunutí \(u, v, w \) (3) v celém řešeném útvaru, tedy také jeho složky deformace \(\varepsilon \) a napětí \(\sigma \), případně vnitřní síly, působící na řez libovolného jeho části. K tomu je nutno zavést vhodné geometrické hypotézy, jako byla např. (4), ověřené co do výstižnosti různými úvahami, experimentálně praktickými zkušenostmi apod.

b) Na základě hypotéz a) nutno jednoznačně pro každý typ tvarově ortotropní desky stanovit:

b1) VSTUP: Konstanty \(D_{ik} \) v matici fyzikálních konstant \(D \) u fyzikálně ortotropní desky, která nahradí ve výpočtu danou desku.

b2) VÝSTUP: Způsob dalšího využití tisků vnitřních sil náhradní fyzikálně ortotropní desky pro dimenzování a posuzování dané tvarově ortotropní desky, tj. jaké vnitřní síly, resp. napětí v dané desce vznikají.

Přesná analýza splnění předpokladů a) a výstižnosti resp. technické upotřebitelnosti výsledků by vyžadovala porovnání s přesným prostorovým řešením skutečné konstrukce alespoň v několika typických resp. limitních případech, nebo se spolehlivým experimentálním měřením.
Fyzikálně a tvarově ortotropní desky

Toto je k dispozici jen u některých případů, např. u ocelových desek s žebra apod.; pak se ve vstupech b 1) pracuje s podrobnějšími údaji o skladbě průřezu desky. Většinou však taková analýza není provedena a ke srovnání může sloužit jen nějaká opět přibližná metoda, např. u komůrkových průřezů desek, což ovšem není průkazem, protože není spolehlivě známa odchylka od exaktního řešení. Vzhledem k řadě faktorů, ovlivňujících vlastnosti stavebních konstrukcí, lze pro přibližné výpočty akceptovat některé osvědčené formule, které dale doplníme novějšími úvahami zejména pokud jde o torzní tuhost.

6.2 Jednoduché typy ortotropních desek

6.2.1 Energetická ekvivalence průřezových charakteristik

V odst. 6.2 probereme desky, u nich lze zanedbat vliv příčného smyku a které v celém rozsahu splňují klasickou Kirchhofovu hypotézu (4). Prakticky jde o běžné, nepříliš tlusté desky, které jsou žebrovány, zvlášněny či jinak vyztuženy ve dvou směrech \(x \perp y \), shodných se zvolenými směry souřadnic (např. [1], str.37, obr.9).

Při převodu na fyzikálně ortotropní desku, tj. při výpočtu konstant \(D_k \) v matici tuhostí \(D \) (16), nutno dodržet zásadu ekvivalence potenciální energie vnitřního a náhradního tělesa. U probíraných desek je to výraz tvaru

\[
\Pi_i = \frac{1}{2} \iint [M_x (-w_{xx}) + M_y (-w_{yy}) + M_{xy} (-w_{xy}) + M_{yx} (-w_{yx})] \, dx \, dy
\]

což je integrál ze součinů, vyjadřujících jen práci momentů (obdobně jako u štíhlého ohýbaného a krouceného prutu) na křivostech, které jsou při malých průhybech \(w \) vyjádřeny druhými derivacemi. Při řešení náhradní desky MKP bude všude (nebo s výjimkou útvarů o nulové plošné mřež) 2. smíšená derivace spojitá a platí rovnost

\[
w_{xy} = w_{yx}.
\]

Stejně tak bude v náhradní desce platit věta o vzájemnosti kroučicích momentů:

\[
M_{xy} = M_{yx},
\]

takže (29) se zjednodušuje na tvar:

\[
\Pi_i = \frac{1}{2} \iint [M_x (-w_{xx}) + M_y (-w_{yy}) + 2M_{xy} (-w_{xy})] \, dx \, dy.
\]
Fyzikálně a tvarově ortotropní desky

Kladný smysl všech veličin je zobrazen na obr. 2. Srovnávací hladinou ($\Pi_i = 0$) je prvotní nedeformovaný stav. Π_i je vždy kladná.

Mějme nyní systém dvou osnov prutů souběžných s osou x a y s ohybovými tuhostmi $(E´J)_x$, $(E´J)_y$ a torsními tuhostmi $(G J_k)_x$, $(G J_k)_y$, vykazující ohybové křivosti $\kappa_x = w_{xx}$, $\kappa_y = w_{yy}$ a poměrné zkroucení ϑ_x, ϑ_y. Potenciální energie ohybových a kroutících momentů tohoto systému je

\[
\Pi_i = \frac{1}{2} \sum \int \left((E’J)_x \kappa_x^2 + (E’J)_y \kappa_y^2 + (G J_k)_x \vartheta_x^2 + (G J_k)_y \vartheta_y^2 \right) ds. \tag{39}
\]

Porovnáním (39) a (35) plynou – zatím jen formálně – tyto vztahy pro pruhy desky jednotkové šířky $d_x = 1$ nebo $d_y = 1$:

\[
\begin{align*}
M_x &= -(E’J)_x w_{xx}, & M_y &= -(E’J)_y w_{yy} \\
M_{xy} &= M_{kx} = -(G J_k)_x \vartheta_x, & M_{yx} &= M_{ky} = -(G J_k)_y \vartheta_y
\end{align*} \tag{40}
\]

Protože v kompaktní desce nemůže volně probíhat příčná kontrakce a dilatace průřezů prvků (obr. 3).
Fyzikálně a tvarově ortotropní desky

jsou pruhy desky ohybově poněkud tužší než nosníky. To lze zahrnout do hmoty modulu pružnosti, takže např. u izotropní desky pracujeme s modulem

\[E' = \frac{E}{1-\mu^2}, \]

což vyjde z přesných vztahů mezi \(\sigma \) a \(\epsilon \). Dále je z obr. 3 patrno, že příčné kontrakce průřezu zabrání u desek jisté příčné momenty \(M' \). Např. u izotropních desek při ohybu momentu \(M_y \) do válcové plochy \(w(y) \) vzniknou příčné momenty

\[M' = M_y = \mu M_x, \]

a obdobně při ohybu \(M_x \) do plochy \(w(x) \):

\[M' = M_x = \mu M_y. \]

Tento efekt zmizí u materiálu bez příčné kontrakce \((\mu = 0) \).

Prozkoumejme, k čemu vedou formální vztahy (40) až (43) u izotropní desky tloušťky \(h<<1 \), takže je

\[J_x = J_y = \frac{1}{12} h^3, \quad J_{xx} = J_{yy} = \frac{1}{3} h^3. \]

Využijme také známou relaci pro smykový modul

\[G = \frac{E}{2(1+\mu)}, \]

a označme známou deskovou konstantu

\[D = \frac{E h^3}{12(1-\mu^2)}. \]

Dostaneme vztahy mezi momenty a křivostmi

\[\begin{align*}
2) & \quad M_y = -D (w_{yy} + \mu w_{xx}), \\
1) & \quad M_x = -D (w_{xx} + \mu w_{yy})
\end{align*} \]

které plně souhlasí se vztahy, odvozenými z hypotézy (4). Dále uvažme podle obr. 4, že celkové zkroucení \(\vartheta \) (přesněji torsní křivost) prvku desky ovlivňují \(\text{oba} \) páry zkručujících momentů, takže je

\[\vartheta = \vartheta_x + \vartheta_y. \]
V desce je spojitá smíšená derivace \(w_{xy} = w_{yx} \) (viz též obr. 2), prvek desky je zdeformován do zborcené přímkové plochy typu hyperbolického paraboloidu \(w(x, y) = \frac{d}{2} \vartheta_{xy} \) v lokálních souřadnicích \(x, y \) s počátkem ve středu prvku, takže v rozích \(x = \pm \frac{d}{2}, \quad y = \pm \frac{d}{2} \) vychází \(w = \pm w_0 \). Podle (40) platí pak obecně vztah

\[
\vartheta = w_{xy} = -\left(\frac{M_{xy}}{(GJ_k)_x} + \frac{M_{yx}}{(GJ_k)_y} \right)
\]

a u izotropních desek při

\[
M_{kx} = M_{ky} = M_{xy} = M_{yx}, \quad (GJ_k)_x \equiv (GJ_k)_y = GJ_k:
\]

\[
w_{xy} = -2 \frac{M_{xy}}{GJ_k}, \quad M_{xy} = -\frac{1}{2} GJ_k w_{xy}.
\]

Po dosazení podle (44) a (45), znásobení jednotkou ve tvaru \(\frac{1-\mu}{1+\mu} \) a využití vztahu

\[
(1+\mu)(1-\mu) = (1-\mu^2)
\]

dostaneme

\[
M_{xy} = -\frac{1}{2} \frac{E}{2(1+\mu)} \frac{h^3}{3} w_{xy} \frac{1-\mu}{1-\mu} = -\frac{Eh^3}{12(1-\mu^2)}(1-\mu) w_{xy} = -D(1-\mu)w_{xy},
\]

což je stejný vzorec, jaký vychází přesným postupem (integrací \(\tau_{xy} \)) z hypotézy (4).

Nosniková úvaha o fyzikálních konstantách desky vede tedy na správnou matici tuhosti \(\textbf{D} \) izotropní desky. Můžeme ji podle (16) nebo (33), (47) a (51) zapsat ve tvaru obvyklém v MKP:

\[
\begin{bmatrix}
M_x \\
M_y \\
M_{xy}
\end{bmatrix} = -D
\begin{bmatrix}
1 & \mu & 0 \\
\mu & 1 & 0 \\
0 & 0 & 1-\mu
\end{bmatrix}
\begin{bmatrix}
w_{xx} \\
w_{yy} \\
2w_{xy}
\end{bmatrix},
\]
Lze tedy očekávat, že taková úvaha nebude principiálně, tj. co do podmínek rovnováhy a spojitosti, závadná ani u jednoduchých desek tvarově ortotropních, což také potvrzuji dosavadní zkušenosti z experimentů a praxe.

6.2.2 Ohybové a kroutící momenty

Tyto veličiny mají u desek rozměr síly, nebo výstižněji síly x délky na jednotku šířky řezu deskou. V hlavních jednotkách SI je to N (newton) nebo Nm/m (newtometr na metr šířky).

Převod na dříve užívané jednotky:

1 kp = $9,80665 \, N = 10 \, N$

1 Mpa = $10^4 \, N = 10 \, kN$

Všechny provedené charakteristiky J_x, J_y, J_{xz}, J_{xy} nutno počítat buď pro jednotku šířky řezu, nebo pro jinou šířku řezu b, např. vzdálenost žebra nebo rozměr prvku dělení a pak šířkou b výsledek dělit. Rozměr J výjde tedy v $[m^3]$.

6.2.2.1 Deska bez příčné kontrakce

Sem patří prakticky všechny žebrované desky s otevřeným žebrováním (ne komůrkové), protože ohybové tuhost je u nich převážně ovlivněna žebry a ta se vzájemně příčně neovlivňuje žádnou spojitou kontrakcí. Také u železobetnonových desek se slabým žebrováním, zejména po vzniku vlasových trhlinek v tažencích částí betonu, je tzv. efektivní hodnota μ velmi malá (např. 0,02) a výpočty při $\mu = 0$ výstižné. Matici fyzikálních konstant je pak diagonální, protože $D_{12} = D_{21} = 0$ viz (28). Zbývá tedy určit jen D_{11}, D_{22}, D_{33}.

Prvé dvě ohybové konstanty jsou celkem nesporné a podle (40) je vypočtu ze vzorců z (53) $D_{11} = (EJ)_x, D_{22} = (EJ)_y, [Nm]$. Vzorce zahrnují i případnou různost $E_x \neq E_y, [Nm^2]$. $J_x, J_y, [m^3]$ se vztahují na jednotku šířky řezů rovinami $x = \text{konstanta}, y = \text{konstanta}$. Pro nejčastější případ $E_x = E_y = E$ a při výpočtu $J_{xb}, J_{yb}, [m^4]$ pro žebra s určitou spolupůsobící šířkou b_x, b_y deskou.

(54) $D_{11} = \frac{EJ_{xb}}{b_x}, D_{22} = \frac{EJ_{yb}}{b_y}$

Je-li deska tloušťky h žebrovaná jen ve směru x, je

(55) $D_{22} = \frac{Eh^3}{12}$

Za spolupůsobící šířku b_x, b_y lze vzít u běžných betonových desek s žebry ve směru x i y pro účely tohoto výpočtu prakticky vždy plnou vzdálenost podle obr. 5a.
Jen u tenkých desek, např. u ocelových ortotropních mostovek, projeví se výrazněji snížení b_x, b_y podle platných norem (obr. 5b). Nutno však přihlédnout ke skutečné povaze zatížení desky aj. okolnostem a neaplikovat normový vzorec, platný spíše pro zjišťování napětí, ne náhradní ohybovou tuhost. V nejistých případech b_x, b_y se doporučuje zvláštní konzultace s autorem tohoto návodu.

Třetí konstanta, torzní D_{33}, je problematická, ale ve většině případů se lze spokojit s výrazem, plynoucím při $\mu = 0$ z (24).

$$D_{33} = \frac{1}{2} \sqrt{D_{11}D_{22}},$$

který pro isotropii a $\mu = 0$ přeje ve správnou hodnotu $\frac{1}{2} D$, viz (52). Tomu pak přísluší v tisku výsledků jeden kroutící moment $M^F_{xy} = M^F_{yx}$ náhradní fyzikálně ortotropní desky

$$M^F_{xy} = 2 w_{xy} = -\sqrt{D_{11}D_{22}} w_{xy}.$$

Rovnost $M^F_{xy} = M^F_{yx}$ je důsledek věty o vzájemnosti smykových napětí $\tau_{xy} = \tau_{yx}$ (obr. 6a), která musí na svislé hraně prvku desky platit i u tvarově ortotropních desek, ale obecně u nich neimplikuje rovnost kroutících momentů, jak plyne názorně z obr. 6b. Kroutící momenty se získají z toku smykových napětí integrací po průřezu rovinami $x = \text{konstanta}$ a $y = \text{konstanta}$:

$$M_{xy} = -D_{33} \cdot 2 w_{xy},$$

$$M_{yx} = -D_{33} \cdot 2 w_{yx}.$$

K přesné aplikaci vzorců (58 a 59) bychom museli znát přesný průběh smykového toku po průřezech dané tvarově ortotropní desky. To je dosti obtížná prostorová úloha, která by vyžadovala značně náročnou aplikaci MKP. Proto uvedme nejprve přibližný technický výpočet, vycházející z odhadu torzních tuhostí pruhů desky jako nosníků v roštu bez kontinuální souvislosti. Protože w_{xy} je u desky spojitá funkce, platí $w_{xy} = w_{yx}$ (obr. 6c) a srovnávací nosníky mají týž poměrný úhel zkroucení, takže je poměr momentů (58) a (59).
Fyzikálně a tvarově ortotropní desky

\[\frac{M_{xy}}{M_{yx}} = \frac{(GJ_k)_x}{(GJ_k)_y} \]

Mezi momentem (57) a momenty (58), (59) zavedeme součtový vztah, který není v rozporu s isotropním případem; plyne porovnáním výrazů pro energii (35) a (38) při spojitě smíšené derivaci funkce \(w \), kdy musí platit \(w_{xy} = w_{yx} \):

\[\tau_{yx} = \tau_{xy} \]
\[M_{yx} = M_{xy} \]

\[\tau_{yn} \]
\[F_x \]
\[F_y \]
\[M_{yx} \neq M_{xy} \]

\[w_{xy} = w_{yx} \]

Obr. 6
(61) \(M_{xy} + M_{yx} = 2M_{xy}^E \).

Tím dospějeme k těmto hodnotám:

(62) \[M_{xy} = \frac{(GJ_k)_x}{(GJ)_x + (GJ)_y} 2M_{xy}^E, M_{yx} = \frac{(GJ_k)_y}{(GJ)_x + (GJ)_y} 2M_{xy}^E. \]

Dosaďme (62) do vzorce (49); dostaneme vztah

\[w_{xy} = -\frac{4M_{xy}^E}{(GJ)_x + (GJ)_y} \]

Porovnáním se vzorcem (57)

\[w_{xy} = -\frac{M_{xy}^E}{2D_{33}} \]

vychází vztah, podle něhož budeme počítat vstupní údaj \(D_{33} \), tj. torzní tuhost náhradní fyzikálně ortotropní desky.

(63) \[D_{33} = \frac{1}{8}[(GJ)_x + (GJ)_y] . \]

Veličiny \(J_k [m^3] \) se vztahují na jednotkovou šířku řezu. Zpravidla se počítají pro jinou vhodnou šířku (prutový průřez) \(b \), takže je pak \(J_k = J_{kb} [m^4] : b [m] \).

Nedostatkem tohoto postupu je skutečnost, že v desce nemůže dojít k cílitěmu Saint Venantovskému kroucení pruhů ve směru \(x \) a \(y \), neboť:

a) plášť těchto pruhů nemá všude nulové povrchové smykové napětí (na svislých stěnách pláště je \(\tau \neq 0 \)) b) průřezy pruhů nemohou volně deplanovat.

U slabších desek se silnějšími žeby nevznikají příliš velké odchylky. V jiných případech je postup přijatelný, je-li všude \(|M_{xy}| \neq |M_x, M_y| \). Pokud bychom veličiny \(J_k \) počítali na základě správného smykového toku (58), (59), bude postup vždy přijatelný. Mimofádné případy, např. desky se zabetonovanými nosníky apod. odkazujeme na speciální konsultace.

Pro příbližné vypočty běžných konstrukcí stačí použít pro \(D_{33} \) vzorec (56), který nevyžaduje zjišťování torzních tuhostí. Lze dokázat, že jak vzorec (56), tak i pozdější vzorec (72) pro desky s příčnou kontrakcí jsou v případě isotropní desky identické se vzorcem (63), viz úvaha v odst. 6.21 za vzorcem (44). Obecně platí podle (61)

(63a) \[D_{33} = \frac{1}{2}(D_{33x} + D_{33y}) \]

a v našem zjednodušení je

\[D_{33x} = \frac{1}{4}(GJ)_x, D_{33y} = \frac{1}{4}(GJ)_y. \]
Fyzikálně a tvarově ortotropní desky

Připomeňme ještě, že první index při \(\tau \) a \(M \) značí vždy plochu (řez \(x = \text{konstanta} \)), na niž \(\tau \) či \(M \) působí. Moment \(M_{xy} \) zkrucuje tedy pruhy desky, rovnoběžné s osou \(x \), moment \(M_{yx} \) pruhy, rovnoběžné s osou \(y \). Víz též obr. 4, kde je patrný kladný smysl těchto momentů.

Dva zvláštní případy vzorců (62) :

a) Deska se stejnou torzní tuhostí ve směru \(x \) i \(y \), tj.
\[J_{kx} = J_{ky} \]
\[M_{xy} = M_{yx} = M_{xy}^F \]

tištěná hodnota kroutícího momentu.

b) Deska s výraznou torzní tuhostí jen v jednom směru, způsobenou např. silnými torzně tuhými žebry v jediném směru – označme jej \(x \). Je charakterizována silnou nerovností \(J_{ky} \ll J_{kx} \).

U takové desky poskytnou vzorce (61) a (63) hodnoty
\[M_{xy} \equiv 2 M_{xy}^F \]
\[M_{yx} \equiv 0 \]

takže kroutící moment ve směru \(x \) je dvojnásobek tištěného momentu a ve směru \(y \) je nulový.

Skutečný stav je mezi limitami typu a), b). Pokud jde o tzv. dimenzovací momenty, které jsou v tiscích obsaženy hodnotami
\[M_{xy}^F = (\text{sign.}) (M_{xy}^F + | M_{xy}^F |) \]
\[M_{yx}^F = (\text{sign.}) (M_{yx}^F + | M_{yx}^F |) \]

Nutno uvážit, že je sice \(M_{xy} = M_{yx}^F \), ale \(M_{yx} \) je jen formální hodnota. Použití ve smyslu vzorců (61) či (63).

6.2.2.2 Desky s příčnou kontrakcí.

Součinitelům příčné kontrakce u tvarově ortotropních desek lze podle (16) až (18) přisoudit tento názorný význam (obr. 7) :
Fyzikálně a tvarově ortotropní desky

![Diagram](attachment:image.png)

Obr. 7

\[\begin{align*}
M_x & = \mu_{21} M_y \\
M_y & = 0 \\
M_x & = \mu_{12} M_y
\end{align*} \]
Zdeformujme prvek desky na obr. 7a do tvaru příslušného válcové ploše \(w(x) \) s konstantní křivostí \(w_{xx} \). Pak je \(w_{yy} = 0 \) a podle (16) jsou k tomu potřebné momenty.

\[
M_x = -D_{11} w_{xx}, \quad M_y = -D_{21} w_{xx} = \mu_{21} M_x.
\]

Kdybychom zatěžovali prvek pouze momenty \(M_x \), vznikl by stav podle obr. 7b, protože ze 2. řádku (16) plyne \(M_y = 0 \) podmínka

\[
D_{21} w_{xx} + D_{22} w_{yy} = 0,
\]

takže by se prvek zakřivil také ve směru \(y \), a to konstantní křivostí \(w_{yy} = -D_{21} w_{xx} / D_{22} = -\mu_{12} w_{xx} \). K vyvolání téže křivosti \(w_{xx} \) by stačil menší moment

\[
M_x = -D_{11} (1 - \mu_{21} \mu_{12}) w_{xx}.
\]

Podobně je k vyvolání válcového ohybu prvku \(w(y) \) ve směru \(y \) (obr. 7c) zapotřebí momenty

\[
M_y = -D_{22} w_{yy}, \quad M_x = -D_{12} w_{yy} = \mu_{12} M_y.
\]

V případě zatížení pouhými momenty \(M_y \), tj. při \(M_x = 0 \), vznikne podle 1. řádku (16) nenulová křivost \(w_{xx} = -D_{12} w_{yy} / D_{11} = -\mu_{21} w_{yy} \) a pro vznik téže \(w_{yy} \) stačí menší moment

\[
M_y = -D_{22} (1 - \mu_{12} \mu_{21}) w_{yy}.
\]

Lze tedy pro tvarově ortotropní desky zavést tuto definici součinitelů příčné kontrakce:

Součinitel \(\mu_{21} \) je číselně roven momentu \(M_y \), kterým je třeba zatížit strany \(y \) = konstanta prvku, zatíženého momentem \(M_x = 1 \) na stranách \(x \) = konstanta, aby se prvek ohnul do válcové plochy \(w(x) \). Součinitel \(\mu_{12} \) je pak obdobně hodnota \(M_x \) na stranách \(x \) = konstanta prvku, zatíženého momentem \(M_y = 1 \) na stranách \(y \) = konstanta a ohnutého do válcové plochy \(w(y) \). Snadno lze ověřit, že tato definice je u fyzikálně ortotropních desek rovnocenná původní definici (8) a u izotropních desek vede na známé \(\mu_{12} = \mu_{21} = \mu \). Současně je při této definici patrná, že má-li konstrukce povahu silného roště se slabou deskou, je prakticky \(\mu_{12} = \mu_{21} = 0 \) a jsou přípustné vzorce odst. 6.221.

Maxwell-Bettiho věta u tvarově ortotropních desek:

Zatížíme-li prvek desky jen momenty \(M_x = 1 \), vzniknou křivosti

\[
w_{xx} = -1 / D_{11} (1 - \mu_{12} \mu_{21}),
\]

\[
w_{yy} = + \mu_{12} / D_{11} (1 - \mu_{12} \mu_{21}).
\]

Zatížíme-li jen momenty \(M_y = 1 \) budou křivosti

\[
w_{yy} = -1 / D_{22} (1 - \mu_{12} \mu_{21}),
\]

\[
w_{xx} = + \mu_{21} / D_{22} (1 - \mu_{12} \mu_{21}).
\]

Při malých průhybech jsou poloměry křivostí \(R_x = 1 / w_{xx}, R_y = 1 / w_{yy} \). Vztahujeme-li momenty na jednotku šířky, tj. uvažujeme-li o prvku se stranami \(b_x = b_y = 1 \), pak jsou úhly vzájemného natočení původně rovnoběžných svislých stěn prvku

\[
\alpha = b_x / R_x = w_{xx}, \quad \beta = b_y / R_y = w_{yy}.
\]

Maxwell-Bettiho věta \(\alpha = \beta \) vede na rovnost (67) = (68), tj.
která je identická s rovností (18) u fyzikálně ortotropních desek. Tam byla ovšem důsledkem obecně platné symetrie fyzikálních konstant (8), která plyne přímo z požadavku, aby potencionální energie vnitřních sil tělesa byla homogenní kvadratickou funkcí složek napětí nebo složek deformace.

Také u tvarově ortotropních desek nutno tedy dbát, aby byla splněna relace (69). Zjistíme-li jakou technickou úvahou nebo experimentálně, např. součinitel \(\mu_{12} \) pro stav na obr.7a, je tím již určen i druhý součinitel (pro stav na obr.7c):

\[
\mu_{12} = \frac{D_{11}}{D_{22}} \mu_{21}.
\]

Splnění této relace nevede u technických materiálů chovajících se jako fyzikálně ortotropní (překližky, skolamináty apod.) na velké hodnoty \(\mu \). Např. pro určitý druh lisovaných překližek je

\[
\frac{D_{11}}{D_{22}} = \frac{305}{46.7}; \quad \mu_{21} = 0.02; \mu_{12} = 0.13;
\]

nebo u jedné křížem lepené překližky se zjistilo

\[
\frac{D_{11}}{D_{22}} = \frac{120}{60}; \quad \mu_{21} = 0.0355; \mu_{12} = 0.071.
\]

U tvarově ortotropních desek se v praxi může vyskytnout velký poměr \(D_{11} / D_{22} \), řadově 10 až 20. Zpravidla se však zjistí, že je při tom součinitel \(\mu_{21} \) velmi malý, takže \(\mu_{12} \) nepřesáhne 0,50 až 1,00. Vzhledem k definici \(\mu_{12}, \mu_{21} \) pomoci ohybových momentů (obr.7) nejou teoreticky na závadu hodnoty větší než 0,50 nebo i větší než 1,00. Nejde vlastně o žádné fyzikální součinitele kontrakce, které by byly limitovány objemovými změnami látky. V reálných případech při správné úvaze o příčných momentech se však takové hodnoty málokdy vyskytnou.

Protože zjištění skutečného součinitele \(\mu_{12} \) nebo \(\mu_{21} \) může být samo o sobě dost složitým problémem, používají se v praxi pro tzv. nedagonální tuhostní člen \(D_{12} \) jednoduché přibližné vzorce, které neobsahují tyto součinitele, ale jen součinitel \(\mu \) isotropního materiálu, z něhož je deska zhotovena, tedy např. \(\mu = 0,15 \) pro beton nebo 0,30 pro ocel. U žebrovaných a komůrkových desek lze užít zjednodušeného vzorce (28):

\[
D_{12} = \mu \sqrt{D_{11}D_{22}},
\]

nebo obdobného vzorce (27), který však dává kladné \(D_{12} \) jen pro \(\gamma + \mu < 1 \), což např. limituje jeho použití u betonu na případy \(0,85 \leq \gamma < 1 \), které jsou ale právě doslovočné.

Podobně se místo (56) použije zjednodušený vzorec (23):

\[
D_{33} = \frac{1-\mu}{2} \sqrt{D_{11}D_{22}}
\]

a do vzorců (53) až (55) se dosazuje zvětšený modul pružnosti (41), což představuje u betonu zvětšení o 2,25% a u oceli o 9%, tedy celkem malé.

Pro využití tisků \(M_{xy} \) platí závěry z předešlého odstavce 6.221. Poznámka k střednicové rovině desky:
Jak je patrné z předchozích obrázků, leží obecně těžiště řezů \(x = \text{konstanta} \) v jiné vzdálenosti \(e_x \) od horních vláken desky než těžiště řezů \(y = \text{konstanta} \). Vzniká tedy otázka, kde je střednicová rovina desky. Tato otázka zmizí, uvážíme-li, že počítáme s dvojrozměrným deskovým kontinuem, v němž \(e_x, e_y \) patří vlastně do „fyzikálních“ vlastností. Závažnější je chyba, která vzniká u desek se značně rozdílným žebrováním zanedbáním vlastní rovné tuhosti \(D_0 = \frac{Et}{(1-\mu^2)} \) horní desky, resp. plochu tloušťky \(t \). Pro tyto případy se osvědčil Gienckeho vzorec pro smíšenou tuhost (20)

\[
D_3 = C + \mu e_x e_y D_0 + (e_x + e_y)^2 \frac{1+\mu}{4} D_0,
\]

vycházející z celkové torzní tuhosti desky

\[
C = \frac{Et^3}{12(1-\mu^2)} + (\text{GJ}_k)_x + (\text{GJ}_k)_y.
\]

Odtud lze určit konstantu ortotropie (26); viz [1], str. 38

6.2.3 Posouvající síly a reakce

Posouvající síly plynou z podmínek momentové rovnováhy prvku desky kolem osy \(y \) a \(x \) (obr. 2):

\[
T_x = \frac{\partial M_x}{\partial x} + \frac{\partial M_{xy}}{\partial y},
\]

\[
T_y = \frac{\partial M_y}{\partial y} + \frac{\partial M_{xy}}{\partial x}.
\]

Po dosazení (16), (58), (59):

\[
T_x = \left[(D_{11} w_{xx} + D_{12} w_{xy})_x + (D_{33} w_{xy} + 2w_{yx})_y \right] = -D_{11} w_{xxx} - (D_{12} + 2D_{33y}) w_{xxy},
\]

\[
T_y = \left[(D_{21} w_{xx} + D_{22} w_{xy})_y + (D_{33} w_{xy} + 2w_{yx})_x \right] = -D_{22} w_{yyy} - (D_{21} + 2D_{33x}) w_{xy}.
\]

Porovnáme-li to se 4. a 5. řádkem matice (16) u fyzikálně ortotropních desek, vidíme, že místo smíšené tuhosti \(D_3 \) podle (20) je nyní ve 4. řádku člen

\[
D_{3x} = D_{12} + 2D_{33y}
\]

a v 5. řádku člen

\[
D_{3y} = D_{12} + 2D_{33x}.
\]
V základní deskové rovnici (25), která je podmínkou svislé rovnováhy prvku desky
\[
\frac{\partial T_x}{\partial x} + \frac{\partial T_y}{\partial y} + p = 0
\]
a zároveň Eulerovou diferenciální rovnici variační deskové úlohy, vznikne aplikací (79) a (80) místo 2D3 výraz (D3x + D3y), takže pro zjištění výpočtové hodnoty D3 platí relace
\[
(81) \quad D_3 = \frac{1}{2} (D_{3x} + D_{3y}).
\]
Přibližně (viz 63a) je
\[
D_{33x} = \frac{1}{4} (GJ_k)_x, \quad D_{33y} = \frac{1}{4} (GJ_k)_y.
\]
Programy pro fyzikálně ortotropní desky počítají ovšem Tx a Ty podle matice (16). Hodnoty, platné pro tvarově ortotropní desku, lze z nich zjistit jen dosti složitým přepočtem. Máme-li již zjištěny kroutící momenty Mxy a Myx, možno tento výpočet kontrolovat podle (75) a (76).

V obou případech se derivace nahrazují diferencemi hodnot v přilehlých uzlech dělení dané desky na konečné prvky, takže k úplné shodě nemůže dojít.

Ve většině rozsahu půdorysu u běžných desek převládají první členy (75),(76) nad druhými a mimoto není rozdíl (79), (80) oproti (20) příliš velký, takže je možno hodnot Tx, Ty použít k orientačnímu dimenzování na smyk.

Reakce desky se počítají podle (29) nebo (30) také u tvarově ortotropních desek.

6.3 Desky s vlivem příčného smyku.

Jde o obdobu krátkých nebo vysokých apod. nosníků, u nichž nelze zanedbat vliv posouvajících sil T na deformaci, protože je řádově stejný jako vliv momentů M. To ovlivňuje tvar ohybové čáry w(x) a tím i hodnoty všech staticky neurčitých veličin, např. podporových momentů, které jsou směrodatné pro dimenzování.

Současně programy, jsou sestaveny pro fyzikálně ortotropní desky podle odst.5.2 s maticí fyzikálních konstant (33) a možností rozšíření na plnou matici typu (5,5) při obecné anizotropii. Proto je nutné tvarově ortotropní desku nejprve převést na fyzikálně ortotropní, tj. stanovit konstanty Dk v matici (33). Pro konstanty D11, D12, D22, D33 platí pokyny z odst.6.22. Zbývá tedy určit konstanty D44 a D55 ve vztazích
\[
(82) \quad T_x = D_{44} \gamma_{yz}, \quad T_y = D_{55} \gamma_{xz}
\]
mezi posouvajícími silami a příčnými smykovými složkami deformace γ tj. změnami pravých úhlů mezi hmotnou normálou střednicové roviny desky po jejím přechodu do ohybové plochy w(x,y), viz. obr.8. Tyto deformace (32) jsou nulové, jen když w = −ϕ, ωy = ϕx (viz znaménková dohoda obr. 1 a 8), tj. když platí Kirchhofova hypotéza (4).

Nejčidnější vzorce dostaneme, předpokládáme-li, že příčné smykové napětí τxz, τyz je rovnoměrně rozloženo po průřezové ploše Fx, Fy řezů šířky b = 1 rovinami x = konstanta a y = konstanta. Pro žebrovanou desku na obr. 8 je
\[
(83) \quad F_{x} = \frac{F_{x1}}{b_{x}}, \quad F_{y} = \frac{F_{y1}}{b_{y}}.
\]
V tom případě je $T_x = \tau_{xz}F_x$, $T_y = \tau_{yz}F_y$, a při modulu pružnosti ve smyku G, stejném v obou směrech, je

$$D_{44} = GF_x, D_{55} = GF_y$$

Jestliže v některém nebo obou směrech nejsou žádná žebra a tloušťka desky je h, pak je v tom směru

$$F_x = h, F_y = h$$

a pak seřešení isotropní tlusté desky je

$$D_{44} = D_{55} = Gh.$$

Tyto vzorce stačí pro odhad velikosti smykového napětí a smykové výztuže v betonu.

Pro podrobnější analýzu je třeba vycházet ze skutečného průběhu smykového napětí $\tau_{xz}(z)$, $\tau_{yz}(z)$ v intervalu $-h_1 \leq z \leq h_2$, je-li $h_1 + h_2 = h$ tloušťka desky a h_1, h_2 vzdálenosti krajních vláken od těžiště průřezu. U tvarově ortotropních desek lze vycházet ze známého vzorce Grashof – Žuravského (s deskovými indexy)

$$\tau_{xz}(z) = \frac{T_x}{J_x} \frac{S(z)}{2\eta(z)}$$

a obdobně pro τ_{yz} kde $2\eta(z)$ je šířka průřezu v místě daném souřadnicí z a $S(z)$ je statický moment části průřezu nad touto šířkou k vodorovné těžištní ose (obr.9). Tento vzorec vede u obdélníkového průřezu šířky $\eta = 1$ na průběh $\tau_{xz}(z)$ podle paraboly 2.stupně s maximem $\frac{3}{2} \frac{T}{h}$ v těžišti.
Fyzikálně a tvarově ortotropní desky

Týž průběh dostaneme u izotropních desek v Kirchofovské teorii (4) z přesných Cauchyho rovnic rovnováhy, takže se lze domnívat, že aplikace (87) u tvarově ortotropních desek bude dosti výstižná.

Nerovnoměrně rozdělené smykové napětí \(\tau_{xz}(z), \tau_{yz}(z) \) způsobí smykové deformace \(\gamma_{xz}(z), \gamma_{yz}(z) \), nerovnoměrně rozdělené po tloušťce desky.

Pokud zavedeme předpoklad tuhé normály (obr.8), je důsledkem konstantní \(\gamma_{xz}, \gamma_{yz} \) tedy i \(\tau_{xz}, \tau_{yz} \), takže jsou oprávněny vzorce (83)-(86). Vycházíme-li z přesnějšího průběhu (87) a chceme dodržet postup MKP, musíme zjistit vztah mezi \(T_x, T_y \) a hodnotami \(\gamma_{xz}, \gamma_{yz} \), které jsou na \(z \) nezávislé a reprezentují úhlové změny ve smyslu ekvivalence potencionální energie vnitřních sil. Pro tvarově ortotropní desky vyjdeme opět z prutové úvahy: V prvku prutu délky \(l \), v němž působí konstantní síla \(T_x \) se nahromadi potencionální energie:

\[
\pi_i = \frac{1}{2} l \int_{F_x} (\tau_{xz}\gamma_{xz} + \tau_{xy}\gamma_{xy}) dF_x
\]

Dosadíme-li sem podle Grashofovy hypotézy \(\tau_{xz} \) (87) a

\[
\tau_{xy}(y,z) = \tau_{xz}(z) \frac{\text{tg}\phi(z)}{\eta(z)}
\]

a podle Hookeova zákona

\[
\frac{\gamma_{xz}}{G} = \frac{\gamma_{xy}}{G}
\]

vyjde

\[
\pi_i = \frac{\pi T_x^2}{2GJ_x^2} \int_{F_x} \int S^2(z) \left(1 + \frac{\text{tg}^2\phi(z)}{\eta^2(z)} \right) dF_x.
\]

Obr. 9
Zavedeme obvyklý tvar výrazu pro energii s opravným součinitelem β, vyjadřujícím proměnnost τ po průřezu

\[(88) \quad \pi_i = \frac{1}{2} T_x^2 \beta,\]

\[(89) \quad \beta = \frac{F_x}{4J_x} \int F_x \left(\frac{S^2(z)}{\eta^2(z)} \left(1 + \frac{y^2\tan^2\varphi(z)}{\eta^2(z)} \right) \right) dy dz.\]

Napišme energii (88) ve tvaru polovičního součinu síly T_x a dráhy w_T (obr.9):

\[
\pi_i = \frac{1}{2} T_x w_T,
\]

\[
w_T = \frac{\beta T_x}{GF_x} l = \gamma_{xz} l.
\]

Pak je patrno, že konstantní úhlová změna, energeticky ekvivalentní proměnný γ_{xz} (z) je tedy

\[
\gamma_{xz} = \beta \frac{T_x}{GF_x}.
\]

\[T_x = \frac{1}{\beta} GF_x \gamma_{xz}.
\]

Místo vzorců (84), platných pro konstantní τ_{xz} po celém průřezu, lze tedy počítat s těmito členy matice fyzikálních konstant:

\[(90) \quad D_{44} = \frac{1}{\beta_x} GF_x, D_{55} = \frac{1}{\beta_y} GF_y,
\]

kde indexy při β upozorňují, že β může být různé pro řezy $x = \text{konstanta}$ a $y = \text{konstanta}$.

6.4 Komůrkové průřezy

6.4.1 Tlustostěnné komůrkové průřezy – vylehčené desky.

Deska vylehčená dutinami v jednom směru průběžně probíhajícími (označme jej x) může být počítána jako tvarově ortotropní deska s příčnou kontrakcí a platí pro ni vzorce odst. 6.22. Předpokladem je, že stěny komůrkových průřezů jsou dosti silné. Jejich tloušťka t_i (může být i proměnná) by měla řádově splňovat nerovnost

\[(91) \quad t_i > \frac{h}{10},\]

je-li h celková tloušťka desky. Jsou-li svislé stěny dostatečně tlusté (poměr $b_s / b > 1/10$), lze zanedbat vliv posouvajících sil na deformaci desky a použít těchto vzorců z odst.6.22 k výpočtu matice fyzikálních konstant (obr.10):
Fyzikálně a tvarově ortotropní desky

\[
(92) \quad D_{11} = \frac{EJ_{ab}}{b(1-\mu^2)} , \quad D_{22} = \frac{EJ_y}{1-\mu^2} \\
D_{12} = \mu \sqrt{D_{11}D_{22}} , \quad D_{33} = \frac{1-\mu}{2} \sqrt{D_{11}D_{22}}.
\]

<table>
<thead>
<tr>
<th>Průřez:</th>
<th>(\beta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obdélník (deska bez žeber)</td>
<td>6/5</td>
</tr>
<tr>
<td>Plný kruh a přibližně i pro plný n – úhelník ((n \geq 6))</td>
<td>32/27 (TP 3)</td>
</tr>
<tr>
<td>Kružnice – tenkostěnné kruhové prstence a přibližně n – úhelníky ((n \geq 6))</td>
<td>2</td>
</tr>
<tr>
<td>Ocelové l č.8 až 45</td>
<td>2,8 až 2,1</td>
</tr>
<tr>
<td>Betonové profily typu l, □ T apod. s plochou (F) a plochou stojin (F_s), přibližně</td>
<td>(F/F_s)</td>
</tr>
</tbody>
</table>

Průřezy l, □ apod. při součtu tlouštěk svislých stěn \(t_1 \) a poloměru setrvačnosti k neutrální ose \(r \):

\[
\Sigma = t_1
\]

\[
k = \frac{3(e_2^3 - e_1^3)e_1}{2e_2^3}
\]

\[
1 + k \left(\frac{t_2}{t_1} - 1 \right) \frac{4e_2^3}{10r^3}
\]

Hodnota \(J_y \) se spočítá pro řez \(y = \) konstanta jednotkové šířky, vedený nejslabší částí vodorovných stěn truhlíků.
Fyzikálně a tvarově ortotropní desky

Hodnoty \(J_{ab} \) se počítají pro 1 průřez, v němž šířka přírub b je vždy vzdálenost mezi svislými osami komůrek. Při nestejných komůrkách vzniknou i nesymetrické 1 průřezy. \(J_{ab} \) se ale vždy vztahuje k vodorovné těžištní ose \(y \). Pokud jde o různost výšky těžišť \(x = \) konstanta a \(y = \) konstanta, viz pozn. na konci odst. 6.22, není podstatná.

K výpočtu torzního členu \(D_{33} \) lze použít též vzorce (63):

\[
D_{33} = \frac{1}{8} \left[(GJ_k)_x + (GJ_k)_y \right].
\]

Uvážíme-li připomínky, uvedené v odst. 6.22 za tímto vzorcem. V podstatě jde o to, že rozdíly mezi hodnotami \(J_{kx}, J_{ky} \), plynoucími ze Saint Venantovské torze prutů a hodnotami \(J_{kx}, J_{ky} \), které přísluší skutečným smykovým tokům podle (58), (59), jsou u komůrkových průřezů ještě výraznější než u desek s otevřenými žebry (obr.6b). Na obr.10 jsou šípky s kružky znázorněny smykové toky, jak přibližně vzniknou vlivem nutnosti dodržet vzájemnost \(\tau_{xy} = \tau_{yx} \). V uzavřených komůrkách s dosti silnými svislými stěnami se může vyvinout cirkulace smyku a příslušný \(J_{sk} \) z prutového výpočtu bude vcelku výstižný. V horní a dolní části průřezu \(y = \) konstanta bude však obě analogický k obr.6b, silně potlačen a zhromažděné vzniknou vlastně v řezech \(y = \) konstanta opět komůrkové průřezy a jejich \(J_{ky} \), vztažený na jednotku šířky, bude pro výpočet směrodatný.
6.4.2 Tenkostěnné komůrkové průřezy

Přibližně je lze počítat jako desky s vlivem příčného smyku, při čemž použijeme těchto vstupních údajů, vyplývajících s rovněž s upravenými vzorcemi V.Kříšťka:

\[
D_{11} = D_{22} = \frac{E}{1-\mu^2} \frac{J_{xa}}{a}, \quad D_{12} = \mu D_{11}, \quad D_{33} = \frac{1-\mu}{2} D_{11},
\]

kde \(J_{xa} \) je moment setrvačnosti průřezu o šířce \(a \) (obr.11) mezi osami komůrek. Může být ovšem po prvcích proměnný, tj. komůrky nestejné. Tuhost \(D_{22} \) není tím příliš nadhodnocena, protože vliv stojín na \(J_{xa} \) je malý. Podobně je \(D_{33} \) dosti výstižné zvláště při vnitřních komůrkách, protože smykový tok proniká jen málo do vnitřních tenkých stojín. Přibližně stačí počítat s orientační hodnotou \(\frac{J_{xa}}{a} = \frac{1}{2} \text{th}^2 \), kde \(t \) je tloušťka vodorovných desek a \(h \) jejich osová vzdálenost. Při nestejných tloušťkách lze tuto orientační hodnotu zjistit podle dalšího vzorce (96).

Smykovou tuhost \(D_{55} \) v příčném směru \(y \) (viz 5.řádek maticy (33)) lze zjistit porovnáním vztahu \(T_y = D_{55} \gamma_{yz} \) se vztahem, platícím mezi příčnou silou

\[
T_y = V_a + V_b
\]

na silně vytaženém rámovém útvaru \(l \) jednotlivé šiřky a jeho celkovým zkosením \(\gamma_{yz} = \gamma_1 + \gamma_2 \), kde \(\gamma_1 \), \(\gamma_2 \) jsou prutové výchylky přírub a stojin. Při rozměrech podle obr.11 vyjde

Obr. 11
\[V_b = \alpha V_a, \quad \alpha = \frac{h + a}{t_h} \frac{1}{6t_h^2}. \]

\[\gamma_{yz} = \frac{2aT_y}{E(1+\alpha)} \left[\frac{a}{t_a^3} + \frac{h}{t_h^3} - \frac{1}{2}(2-\alpha) \right]. \]

Je tedy:

\[D_{55} = \frac{E(1+\alpha)}{2a} \left[\frac{a}{t_a^3} + \frac{h}{t_h^3} - \frac{1}{2}(2-\alpha) \right] \left[\text{Nm}^{-1} \right]. \]

Smykový modul \(G_{23} \) (odst.5) jsme k této úvaze nepotřebovali, ale mohli bychom jej pro náhradní fyzikální deskové kontinuum zjistit např. za předpokladu (34) ze vztahu \(G_{23} = D_{55} / h \), aniž zavádime představu sendvičové desky s měkkým jádrem.

V místě příčných ztužidel a tuhost \(D_{55} \) podstatně zvětšuje. Jsou-li velmi tuhá a zajišťují nedefinovatelnost průmětu průřezu do svislé roviny, pak u prvků v jejich okolí lze \(\gamma_{yz} \) zanedbat (viz postup u \(D_{44} \)). Tak by tomu mělo být u účelné navržených diafragmat a jejich stěnová tuhost je oproti dříve uvedené však rozzvětění vůči větší. V MKP můžeme proměnu \(D_{55} \) po prvcích snadno respektovat. U hustě rozmiřených diafragmat, případně-li na každý konečný pruh jedno diafragma, lze počítat s průměrnou hodnotou \(D_{55} \), ale účinek smyku \(\gamma_{yz} \) pak bude malý, jinak by tato diafragma neplnila jeden ze svých účelů.

Pokud jde o tuhost \(D_{44} \) (4.řádek matice (33)), je řádově větší než \(D_{55} \) podle (95) a smykové změny \(\gamma_{xz} \) lze zanedbat. Ve vstupech to lze vyjádřit hodnotou

\[D_{55} = 10^{-\alpha} D_{44}, \alpha = 2 \text{ nebo } 3. \]

Bylo by těž možné upravit program pro desky s jednosměrným vlivem smyku, který anuluje předem \(\gamma_{x2} \).

Zpracování vytížených vnitřních sil:

\(M_x \left[\text{N} \right] \ldots \) na jeden I průřez podle obr.11

případně \(M = a M_x \),

napětí \(\sigma_x = M_x / J \),

extrémy \(\sigma_x = \pm M / W \).

\(T_x \left[\text{Nm}^{-1} \right] \ldots \) obdobně na jeden I průřez bude \(T = aT_x \), napětí \(\tau_{xz} \) podle (87), příbližně u velmi tenkých stěn \(\tau_{xz} = T / h t_n \) jen ve stojině.

\(M_y \left[\text{N} \right] \ldots \) V horní a dolní desce vyniknou v příčném směru y normální síly \(N_y = \pm M_y / h \) a napětí \(\sigma_{yb} = -M_y / h t_b \), \(\sigma_{ya} = M_y / h t_a \).
T_{y}[\text{Nm}^{-1}]\ldots\text{V horní a dolní desce vzniknou příčné posouvající síly } V_b \text{ a } V_a \text{ podle (94), tj. } V_a = T_{y} / (1+\alpha), V_b = \alpha V_a \text{, při stejných tloušťkách desek } V_a = V_b = \frac{1}{2} T_{y}.

Příčné smykové napětí přibližně:
\[\tau_{yab} = V_b / t_b, \tau_{ya} = V_a / t_a. \]

M_{xy}[N]\ldots\text{V horní i dolní desce vzniknou vodorovné smykové síly } T_{xy} = \pm M_{xy} / h \text{ a napětí } \tau_{xy} = T_{xy} / t_a.

Z toho se vypočte u kovových desek hlavní napětí pro posouzení bezpečnosti. U železobetonových konstrukcí (tenkostěnných) obdobně s tím, že tahy převezme měkká nebo předpínací výztuž a vliv M_{xy} se projeví v dimenzovacích momentech, tj. záměnou M_x, M_y za M_{x\text{dim}}, M_{y\text{dim}}.

6.4.3 Srovnávací příklad

Pro porovnání vstupních hodnot D_k uveďme příklad komůrkového průřezu mostní desky nadjezdu C 201 ve Vsetíně, montované lamelové konstrukce.

Obr. 12

Při dělení na konečné prvky bylo použito dělení koincidující s půdorysem komůrek, takže tuhosti prvků se děrovaly podle tuhosti jednotlivých komůrek. Schematicky je příčný řez znázorněn na obr.11, vzhledem k proměnnosti tloušťky stěn byl poněkud složitější. Vypočet podle odst.6.4.1 – tlustostěnné konstrukce – (92) : Momenty setrvačnosti jednotlivých komůrek J_{xb} byly zjištěny na stolním počítací HEWLET-PACKARD programem pro geometrické charakteristiky rovinných útvarů. Momenty J_y lze snadno počítat podle vzorce

\[J_y = t_a t_b - h^2 + \frac{1}{12} \left(t_a^3 + t_b^3 \right), \]

kde \(h = v + \frac{1}{2} t_a + \frac{1}{2} t_b \) je osová vzdálenost vodorovných stěn.

Svislé stěny průřezu mají jednotnou tloušťku 30 cm a jejich osová vzdálenost je 300 cm. Dále uveďme hrubé rozměry pro truhlík b_2 v [cm] : t_b = 18, \(v = 96, t_a = 14, h = 112 \) a to též pro truhlík b_3 : t_b = 19,5 v = 101,5 t_a = 14, h = 118

Fyzikální konstanty E = 385000 daN/cm^2 (kp/cm^2), \(\mu = 0,15 \)
Fyzikálně a tvarově ortotropní desky

Matice tuhostí pro truhlík b_1 (horní čísla podle (92) – tlustostěnné, dolní čísla podle (93) – tenkostěnné se zanedbáním svislé stěny):

$$
D = \begin{bmatrix}
509\,809 & 70\,316 & 0 \\
448\,000 & 67\,100 & 0 \\
70\,316 & 431\,038 & 0 \\
67\,100 & 448\,000 & 199\,228 \\
0 & 0 & 224\,000
\end{bmatrix}
$$

0.10 kN/m (Mpm)

Pro truhlík b_3:

$$
D = \begin{bmatrix}
475\,046 & 64\,720 & 0 \\
389\,000 & 58\,300 & 0 \\
64\,720 & 391\,887 & 0 \\
58\,300 & 389\,000 & 183\,374
\end{bmatrix}
$$

Zmenšení ohybové tuhosti D_{11} zanedbává svislé stěny je zřejmé; tuhosti D_{22}, D_{33} vydají z tenkostěnné teorie poněkud větší. Rozdíly v momentech (násobky typu $D_{11}w_{xx}$, apod.) budou menší, protože při větší D_{11} výje větší průhyb w i derivace w_{xx}. Jak známe, nezávisí u isotropních desek momenty na D vůbec, pokud jde jen o silové zatížení. Tato nezávislost má u ortotropních desek jiný charakter: momenty nezávisí na absolutních hodnotách D_{kk}, ale na jejich poměrech. Nejcharakteristickějším poměrem pro tuto závislost je poměr

$$
\chi = 2D_{33}/\sqrt{D_{11}D_{22}}.
$$

viz (26). Příklady vlivu χ na momenty viz [1], str. 48 ad., tab. 2 a grafy na obr. 13, str. 52.

6.5 Žaluziové desky.

Jde o kolmé nebo šikmě desky skládané z prefabrikátů, při čemž se v přičném směru nepředpokládá žádné spolehlivé monolitické spojení (např. přičným předpětím, pak by se počítaly jako monolitické podle předešlých odst.).
Podélné spáry přenášejí jen posouvající síly \(T_y \) a žádné ohybové momenty \(M_y \).

Žaluziových desek je mnoho typů. Z hlediska vstupních údajů \(D_k \) leží všechny mezi dvěma limitními případy (obr.12):

a) Vzniklé komůrkové průřezy mají tak slabé svislé stěny, že do nich nepřechází prakticky žádný smykový tok, takže kroutící moment \(M_{xy} \) přenáší jen smyk v horní a dolní stěně. Pak platí prakticky rovnost \(M_{xy} = M_{yx} \) a \(J_{xx} = J_{ky} = J_k \), takže podle vzorce (63) je torzní tuhost

\[
D_{33} = \frac{1}{4} \frac{G J_{kk}}{b}, \quad [\text{Nm}]
\]

počítáme-li \(J_{kk} [m^4] \) pro jeden prefabrikát šířky \(b [m] \).

Pro ostatní tuhosti platí vzorce (92) jako u komůrkových průřezů.

b) Průřezy mají velmi silné svislé stěny, takže vznikne souvislá cirkulace smykového toku v řezech \(x = \text{konstanta} \), což vzhledem k větší o vzájemnosti \(\tau_{xy} = \tau_{yx} \) ovlivní i smykový tok v řezech \(y = \text{konstanta} \). Pak platí vzorec (63) s poměrnými torzními tuhostmi \(J_{xx}, J_{ky} [m^3] \), při stálém smykovém modulu \(G \):

\[
D_{33} = \frac{1}{8} G (J_{xx} + J_{ky})
\]

c) Zvláštní případ nastane, když podélné spáry nemohou přenášet žádný kroutící moment. Pak je \(J_{ky} = 0 \), \(J_{33} = \frac{1}{8} G J_{kk} \).

Pro vyhodnocení tisků \(M_{xy} \) obecně platí vzorce (62).

Jestliže u desek typu na obr.12a jsou stojiny tak štíhlé, že vzniká příčné zkosení, zjistí se příslušná tuhost \(D_{55} \) podle odst.63, vzorec (95) odst. 6.42.
6.6 **Jiné typy desek.**

Železobetonové desky s různou výztuží F_{ax}, F_{ay} ve směru x a y se chovají v prvním stadiu před vznikem trhliněk v tažené části betonu prakticky jako izotropní. Ve druhém stadiu se zjistí momenty setrvačnosti J_x, J_y nehomogenních průřezů jednotkové šířky složených z oceli a tlačeného betonu. Poměr J_x/J_y vyjde přibližně roven poměru F_{ax}/F_{ay} s odchylkou několika procent. Protože oblast tlačeného betonu, kde ještě dochází k příčné kontrakci (resp. dilataci) je malá, je efektivní hodnota μ menší než 0,15. Byla naměřena až 0,02. Tuhosti se počítají z dřívějších vzorců:

\[
D_{11} = E'J_x, \quad D_{22} = E'J_y, \quad D_{12} = \mu \sqrt{D_{11}D_{22}}, \quad D_{33} = \frac{1-\mu}{2} \sqrt{D_{11}D_{22}},
\]

\[
D_{44} = D_{55} = \frac{1}{\beta} Gh, \quad \beta = 1, \quad E' = \frac{E}{1-\mu^2}.
\]

S vlivem smyku se počítá jen u desek, jichž tloušťka $h > L/5$, viz odst. 5.2 a 6.3; prakticky závažné odchylky vznikají až při $h > L/3$.

Vlnovky se počítají podle (98), při čemž se bere přibližně sinusovém zvlnění průřezů:

\[
J_x = \left(\frac{1}{2}hH^2\right)\left(1 - \frac{0,81}{1 + 2.5H^2 / 4I^2}\right),
\]

\[
J_y = \frac{1}{s} \frac{h^3}{12},
\]

kde je tvar vln $z = H\sin \pi x / l$, tloušťka vlnovky h, amplituda vln H, l délka tětivy jedné půlvlny. Lze použít přibližně i při nesinusovém tvaru vln. Vlnovky dvojnásobné (systém BEHLEN, PUMS apod.) vyžadují zvláštní výpočet J_x. U supertenkových vlnovek lze J_x počítat na křivce $z = f(x)$ a násobit tloušťkou h. Poměr J_x/J_y je u nich blízký nule.

Příhradové desky jsou prutové soustavy, užívané k zastřešení velkých půdorysů (stadiony apod.). Pro předběžný výpočet je lze považovat za ortotropní desky, při čemž momenty setrvačnosti J_x, J_y pylou z průřezových ploch F_{ax}, F_{ay} prutů v pasech ve směru x a y a rám r_x, r_y k těžišti těchto ploch, přibližně $r_x = r_y = \frac{1}{2}H$. Po rozboru tuhosti dané mezipasové soustavy prutů na zkosení běžným prutovým výpočtem lze zavést i vliv příčného smyku obdobně jako v odst. 6.3. Torzní tuhost je u běžných **pravouhých soustav pasů** bez diagonálě ve vodorovných rovinách prakticky nulová ($D_{33} = 0, \chi = 0$); u jiných soustav nutno ji zjistit srovnávacím výpočtem. Výsledné tisky M_x, M_y, T_x, T_y se využijí pro výpočet osových sil prutů způsobem obvyklým u příhradovin (metoda průsečná). Postup lze rozšířit i na obecné anizotropní desky a je vhodný pro předběžný návrh nebo vyhledání optimální varianty apod. Po definitivním návrhu soustavy lze pak provést přesné posouzení, vycházející z výpočtu osových sil prutů dané soustavy, považované podle povahy styků za prostorovou příhradovinu nebo rám (programy typu STRESS apod.).