

Fassung März 2012

Zusatzmodul

Generierung von Gittermaststrukturen mit Anbauteilen und Belastung

Programm-Beschreibung

Alle Rechte, auch das der Übersetzung, vorbehalten.

Ohne ausdrückliche Genehmigung der INGENIEUR-SOFTWARE DLUBAL GMBH ist es nicht gestattet, diese Programmbeschreibung oder Teile daraus auf jedwede Art zu vervielfältigen.

© Ingenieur-Software Dlubal GmbH Am Zellweg 2 D-93464 Tiefenbach

 Tel.:
 +49 (0) 9673 9203-0

 Fax:
 +49 (0) 9673 9203-51

 E-Mail:
 info@dlubal.com

 Web:
 www.dlubal.de

Inhalt

AST Struktur ileitung AST - Team brauch des Handbuchs fruf des MAST-Moduls ngabedaten asttyp erschnitte astschüsse rtikale Ausfachungen nutzerdefinierte Ausfachungstypen rizontale Gurte rizontale Ausfachung nere Ausfachungen erarme	5 6 7 8 10 13 15 17 18 19 20	 6.12 7. 7.1 7.2 8. 8.1 8.2 9. 9.1 9.2 10. 10.1 10.2 	Export Allgemeine Funktionen MAST-Fall löschen Einheiten und Dezimalstellen MAST Knicklängen Einführung Starten des Moduls Eingabedaten Basisangaben Details Generierte Daten Knicklängen - Fachwerkstäbe	42 43 43 44 44 44 46 46 46 47 50
aleitung AST - Team brauch des Handbuchs fruf des MAST-Moduls ngabedaten asttyp erschnitte astschüsse rtikale Ausfachungen nutzerdefinierte Ausfachungstypen rizontale Gurte rizontale Ausfachung nere Ausfachungen erarme	5 6 7 8 10 13 15 17 18 19 20	 7. 7.1 7.2 8. 8.1 8.2 9. 9.1 9.2 10. 10.1 10.2 	Allgemeine Funktionen MAST-Fall löschen Einheiten und Dezimalstellen MAST Knicklängen Einführung Starten des Moduls Eingabedaten Basisangaben Details Generierte Daten Knicklängen - Fachwerkstäbe	 43 43 43 44 44 46 46 47 50 50
AST - Team brauch des Handbuchs fruf des MAST-Moduls ngabedaten asttyp erschnitte astschüsse rtikale Ausfachungen nutzerdefinierte Ausfachungstypen rizontale Gurte rizontale Ausfachung nere Ausfachungen erarme	6 7 8 10 13 15 17 18 19 20	 7.1 7.2 8.1 8.2 9. 9.1 9.2 10. 10.1 10.2 	MAST-Fall löschen Einheiten und Dezimalstellen MAST Knicklängen Einführung Starten des Moduls Eingabedaten Basisangaben Details Generierte Daten Knicklängen - Fachwerkstäbe	43 44 44 46 46 47 50 50
brauch des Handbuchs fruf des MAST-Moduls ngabedaten asttyp eerschnitte astschüsse rtikale Ausfachungen nutzerdefinierte Ausfachungstypen rizontale Gurte rizontale Ausfachung nere Ausfachungen eerarme	6 7 8 10 13 15 17 18 19 20	 7.2 8. 8.1 8.2 9. 9.1 9.2 10. 10.1 10.2 	Einheiten und Dezimalstellen MAST Knicklängen Einführung Starten des Moduls Eingabedaten Basisangaben Details Generierte Daten Knicklängen - Fachwerkstäbe	43 44 44 46 46 47 50 50
fruf des MAST-Moduls ngabedaten asttyp erschnitte astschüsse rtikale Ausfachungen nutzerdefinierte Ausfachungstypen rizontale Gurte rizontale Ausfachung nere Ausfachungen erarme	7 8 10 13 15 17 18 19 20	8. 8.1 8.2 9. 9.1 9.2 10. 10.1 10.2	MAST Knicklängen Einführung Starten des Moduls Eingabedaten Basisangaben Details Generierte Daten Knicklängen - Fachwerkstäbe	44 44 46 46 47 50
ngabedaten asttyp eerschnitte astschüsse rtikale Ausfachungen nutzerdefinierte Ausfachungstypen rizontale Gurte rizontale Ausfachung nere Ausfachungen erarme	8 8 10 13 15 17 18 19 20	8.1 8.2 9. 9.1 9.2 10. 10.1 10.2	Einführung Starten des Moduls Eingabedaten Basisangaben Details Generierte Daten Knicklängen - Fachwerkstäbe	44 46 46 47 50 50
asttyp erschnitte astschüsse rtikale Ausfachungen nutzerdefinierte Ausfachungstypen rizontale Gurte rizontale Ausfachung nere Ausfachungen erarme	8 10 13 15 17 18 19 20	 8.2 9. 9.1 9.2 10. 10.1 10.2 	Starten des Moduls Eingabedaten Basisangaben Details Generierte Daten Knicklängen - Fachwerkstäbe	44 46 47 50 50
erschnitte astschüsse rtikale Ausfachungen nutzerdefinierte Ausfachungstypen rizontale Gurte rizontale Ausfachung nere Ausfachungen erarme	10 13 15 17 18 19 20	9. 9.1 9.2 10. 10.1 10.2	Eingabedaten Basisangaben Details Generierte Daten Knicklängen - Fachwerkstäbe	46 47 50 50
astschüsse rtikale Ausfachungen nutzerdefinierte Ausfachungstypen rizontale Gurte rizontale Ausfachung nere Ausfachungen erarme	13 15 17 18 19 20	9.1 9.2 10. 10.1 10.2	Basisangaben Details Generierte Daten Knicklängen - Fachwerkstäbe	46 47 50 50
rtikale Ausfachungen nutzerdefinierte Ausfachungstypen rizontale Gurte rizontale Ausfachung nere Ausfachungen erarme	15 17 18 19 20	9.2 10. 10.1 10.2	Details Generierte Daten Knicklängen - Fachwerkstäbe	47 50 50
nutzerdefinierte Ausfachungstypen rizontale Gurte rizontale Ausfachung nere Ausfachungen erarme	17 18 19 20	10. 10.1 10.2	Generierte Daten Knicklängen - Fachwerkstäbe	50 50
rizontale Gurte rizontale Ausfachung nere Ausfachungen erarme	18 19 20	10.1 10.2	Knicklängen - Fachwerkstäbe	50
rizontale Ausfachung nere Ausfachungen erarme	19 20	10.2		
nere Ausfachungen erarme	20		Ettektive Längen -	
erarme			Nichtfachwerkstäbe	51
	21	10.3	Export der Ergebnisse	51
enerierte Daten	23	11.	Allgemeine Funktionen	52
abendgelenke	23	11.1	MAST-Fall löschen	52
abdrehungen	24	11.2	Einheiten und Dezimalstellen	52
ickliste	25	12.	MAST Belastung	53
gemeine Funktionen	26	12.1	Einleitung	53
AST-Fall löschen	26	12.2	Aufruf des Moduls	53
heiten und Dezimalstellen	26	13.	Eingabedaten	55
AST Anbauten	27	13.1	Basisangaben	55
leitung	27	13.2	Eigengewicht	56
fruf des Moduls	27	13.3	Windlast - Teil 1	57
ngabedaten	29	13.4	Windlast - Teil 2	59
sisangaben	29	13.5	Ermittlung des Böenreaktionsfaktors	60
hnen	30	13.6	Abschirmung	61
hnen selbst erstellen	31	13.7	Eislasten - Vereisungsklasse G	62
fsatzrohr	34	13.8	Eislasten - Vereisungsklasse R	63
tennenträger	35	13.9	Details	64
tennengruppen	36	13.10	Verkehrslasten	65
tennen	37	14.	Ergebnisse	66
tennenersatzflächen	38	14.1	Lastfälle	66
enschächte	39	14.2	Eigengewicht und Eisgewicht	67
belbahnen	40	14.3	Windlasten - Böenreaktionsfaktor	67
	41	14.4	Windlasten - Mast	68
n f n s F F f t t t t	leitung iruf des Moduls gabedaten isangaben inen inen selbst erstellen isatzrohr iennenträger iennengruppen iennen iennensatzflächen ienschächte belbahnen iern	Jeitung27geleitung27gruf des Moduls27gabedaten29isangaben29innen30innen selbst erstellen31isatzrohr34isennenträger35iennen gruppen36iennen37iennenersatzflächen38enschächte39pelbahnen40iern41	leitung 27 13.2 gabedaten 29 13.4 isangaben 29 13.5 innen 30 13.6 innen 30 13.6 innen 30 13.6 innen 31 13.7 isatzrohr 34 13.8 isennenträger 35 13.9 isennensträger 36 13.10 isennen 37 14. isennensträger 38 14.1 isennensträger 39 14.2 isennen 37 14.3 isennen 36 13.10 isennen 37 14. isennen 37 14. isennen 38 14.1 isennen 39 14.2 isenschächte 39 14.2 isennen 40 14.3 isenn 41 14.4	Leit fundLiIleitung2713.2Eigengewichtiruf des Moduls2713.3Windlast - Teil 1gabedaten2913.4Windlast - Teil 2isangaben2913.5Ermittlung des Böenreaktionsfaktorsinen3013.6Abschirmunginen selbst erstellen3113.7Eislasten - Vereisungsklasse Gisatzrohr3413.8Eislasten - Vereisungsklasse Risennenträger3513.9Detailsisennen3714.Ergebnisseisennen3814.1Lastfälleisensekter3914.2Eigengewicht und Eisgewichtisensekter3914.3Windlasten - Böenreaktionsfaktorisense4014.3Windlasten - Böenreaktionsfaktor

Inhalt

14.5 Windlasten - Horizontale Ausfachungen 69 14.6 Windlasten - Begrenzung der Windlast 70 14.7 Export der Ergebnisse 70 15. Allgemeine Funktionen 71 15.1 MAST-Fall Jöschen 71 15.2 Einheiten und Dezimalstellen 71 15.2 Einheiten und Dezimalstellen 73 8 Index 73	Inf	nalt	Seite	Inhalt	Seite
14.6 Windlasten - Begrenzung der Windlast 70 14.7 Export der Ergebnisse 70 15. Allgemeine Funktionen 71 15.1 MAST-Fall löschen 71 15.2 Einheiten und Dezimalstellen 71 A Literatur 72 B Index 73	; Wi Au	ndlasten - Horizontale sfachungen	69		
14.7 Export der Ergebnisse 70 15. Allgemeine Funktionen 71 15.1 MAST-Fall löschen 71 15.2 Einheiten und Dezimalstellen 71 15.4 Literatur 72 B Index 73	; Wi Wi	ndlasten - Begrenzung der ndlast	70		
 Allgemeine Funktionen 71 MAST-Fall löschen 71 15.2 Einheiten und Dezimalstellen 71 A Literatur 72 B Index 73 	, Ext	oort der Ergebnisse	70		
 15.1 MAST-Fall löschen 71 15.2 Einheiten und Dezimalstellen 71 A Literatur 72 B Index 73 	All	gemeine Funktionen	71		
15.2 Einheiten und Dezimalstellen 71 A Literatur 72 B Index 73	MA	- ST-Fall löschen	71		
A Literatur 72 B Index 73	2 Ein	heiten und Dezimalstellen	71		
B Index 73	Lit	eratur	72		
	Inc	dex	73		

. MAST Struktur

1.1 Einleitung

Mit diesem leistungsfähigen Modul gibt die ING.-SOFTWARE DLUBAL GMBH dem Anwender ein Werkzeug zur Erstellung von komplexen Gittermaststrukturen in die Hand. Damit lassen sich drei- oder vierseitige Mastkonstruktionen, welche auch räumlich ausgesteift sein können, generieren.

Das Modul bietet mit seiner klaren Strukturierung und den intuitiven Eingabemasken eine innovative Arbeitserleichterung für den Anwender. Geometrisch aufwändige 3D-Maststrukturen lassen sich somit in kürzester Zeit in RSTAB bzw. RFEM erzeugen. Weiterhin ist mit dem Zusatzmodul MAST eine Modifizierung einer bereits bestehenden Struktur sehr leicht möglich. Im vorliegenden Handbuch werden die einzelnen Masken anhand eines begleitenden Beispiels beschrieben.

Wie die übrigen Zusatzmodule ist auch MAST vollständig in RSTAB bzw. RFEM integriert.

Wir wünschen Ihnen viel Freude und Erfolg mit MAST.

Ihr Team von ING.-SOFTWARE DLUBAL GMBH

1.2 MAST - Team

An der Entwicklung von MAST waren beteiligt:

Programmkoordinierung

Dipl.-Ing. Georg Dlubal Ing. Evžen Haluzík Ing. Vladimír Pátý Dipl.-Ing. (FH) Younes El Frem Ing. Pavol Červeňák Dipl.-Ing. (FH) Wieland Götzler

Programmierung

David Schweiner Petr Oulehle Ing. Ph.D. Jaromír Křížek Ing. Martin Budáč Ing. Vladimír Pátý

Querschnitts- und Materialdatenbank

Ing. Ph.D. Jan Rybín

Programmdesign, Dialogbilder und Icons

Dipl.-Ing. Georg Dlubal MgA. Robert Kolouch

Programmkontrolle

Ing. Evžen Haluzík Ing. Jakub Harazín Dipl.-Ing. (FH) René Flori Jozef Krčmárik

Handbuch, Hilfesystem und Übersetzungen

Dipl.-Ing. (FH) René Flori Ing. Ladislav Kábrt Mgr. Ing. Hana Macková Dip.-Ü. Gundel Pietzcker

Technische Unterstützung und Endkontrolle

Dipl.-Ing. (FH) Matthias Entenmann Dipl.-Ing. Frank Faulstich Dipl.-Ing. (FH) Wieland Götzler Dipl.-Ing. (FH) René Flori M.Eng. Dipl.-Ing. (BA) Andreas Niemeier M.Eng. Dipl.-Ing. (FH) Walter Rustler Dipl.-Ing. (FH) Christian Stautner Dipl.-Ing. (FH) Robert Vogl

1.3 Gebrauch des Handbuchs

Die Themenbereiche Installation, Benutzeroberfläche, Ergebnisauswertung und Ausdruck sind im RSTAB- bzw. RFEM-Handbuch ausführlich erläutert, so dass auf eine Beschreibung verzichtet werden kann. Der Schwerpunkt dieses Handbuchs liegt auf den Besonderheiten, die sich im Rahmen der Arbeit mit den MAST-Zusatzmodulen ergeben.

Das Handbuch orientiert sich an der Reihenfolge und am Aufbau der einzelnen Eingabeund Ergebnismasken. Die unterschiedlichen Module werden der Reihe nach vorgestellt: MAST Struktur, MAST Anbauten, MAST Knicklängen und MAST Belastung.

Im Text werden die beschriebenen **Schaltflächen** (Buttons) in eckige Klammern gesetzt, z. B. [Details]. Gleichzeitig sind sie am linken Rand abgebildet. Zudem werden die **Begriffe** der Dialoge, Tabellen und Menüs durch *Kursivschrift* hervorgehoben, um das Nachvollziehen der Erläuterungen zu erleichtern.

Das Handbuch enthält auch ein Stichwortverzeichnis. Sollten Sie trotzdem nicht fündig werden, steht auf unserer Website **www.dlubal.de** eine Suchfunktion zur Verfügung, mit der Sie in der Liste aller *Fragen und Antworten* nach bestimmten Kriterien filtern können.

1

1.4 Aufruf des MAST-Moduls

Es bestehen in RSTAB bzw. RFEM zwei Möglichkeiten, das Zusatzmodul **MAST Struktur** zu starten.

Menü

Der Programmaufruf kann erfolgen über das Pulldownmenü

```
Zusatzmodule \rightarrow Gittermasten \rightarrow MAST Struktur.
```

Zus	atzmodule <u>F</u> enster <u>H</u> ilfe	_			_ 1
48	<u>G</u> ehe zum aktuellen Modul	8	🔎 🛝 🗢 🖉	< ð	P 🔯 🗄 📮 🚂 🍂 🍂
	Querschnittswerte	pz	* 5 🗄 🗊		
1	Stahlbau				
	Stahl <u>b</u> etonbau				
	<u>H</u> olzbau				
	Ve <u>r</u> bundbau				
	Aluminiumbau				
	<u>D</u> ynamik				
	Verbindungen				
	<u>F</u> undamente				
	S <u>t</u> abilität				
	Gittermasten	A	MAST Struktur		Generierung der Strukturen von Gittermasten
	S <u>o</u> nstige	A	MAST Anbaut <u>e</u> n	45	Anbauten von Gittermasten
		A	MAST Belastung		Generierung der Belastung von Gittermasten
		A	MAST Bemessung		Bemessung von Mobilfunk-Gittermasten
		\mathbb{A}^{I}	MAST Knicklängen		Generierung von Knicklängen

Bild 1.1: Menü: Zusatzmodule \rightarrow Gittermasten \rightarrow MAST Struktur

Navigator

Das Modul MAST Struktur kann im Daten-Navigator aufgerufen werden über den Eintrag

```
Zusatzmodule \rightarrow MAST Struktur.
```

Projekt-Navigator		х
The RSTAB		
🚊 📲 Gittermast [MAST]		
🚊 📄 Strukturdaten		
😟 💼 Belastung		
Ergebnisse		
🗀 Ausdruckprotokolle		
🖶 💼 Hilfsobjekte		
😑 🚞 Zusatzmodule		
🛛 📧 DUENQ 7 - Querschnittswerte dünnwandiger Profile		
DICKQ 6 - Querschnittswerte dickwandiger Querschnitte		
🗾 🗾 STAHL - Allgemeine Spannungsanalyse von Stahlstäben		
5 STAHL EC3 - Stahlbernessung nach Eurocode 3		
KAPPA - Biegeknicknachweis		
BGDK - Biegedrillknicknachweis		
FE-BGDK - Biegedrillknicknachweis nach Theorie II Ordnung (FEM)		
EL-PL - Tragsicherheitsnachweis nach Verfahren EL-PL		
C-ZU-T - Nachweis von grenz (c/t)		
MAST Struktur - Generierung der Strukturen von Gittermasten		
MAST Anbauten - Anbauter/\on Mobilfunk-Gittermasten		
MAST Belastung - Generierung der Belastung von Gittermasten		
RSKOMBI - Generierung der LF-Gruppen/-Kombinationen		
Taten 📕 Zeigen	4	⊳

Bild 1.2: Daten-Navigator: Zusatzmodule \rightarrow MAST Struktur

2. Eingabedaten

Die Eingaben zur Definition der Strukturdaten erfolgen in Masken.

Nach dem Aufruf von MAST wird in einem neuen Fenster links ein Navigator angezeigt, der alle aktuell anwählbaren Masken verwaltet.

Die Ansteuerung der Masken erfolgt entweder durch Anklicken eines bestimmten Eintrages im Navigator von MAST oder durch Blättern mit den beiden links dargestellten Schaltflächen. Die Funktionstasten [F2] und [F3] blättern ebenso eine Maske vorwärts oder zurück.

OK Abbrechen

Mit [OK] werden die getroffenen Eingaben gesichert und das Modul MAST verlassen, während [Abbrechen] ein Beenden ohne Sicherung zur Folge hat.

2.1 Masttyp

In Maske 1.1 *Masttyp* erfolgen die Eingaben zur grundlegenden Formgebung der Maststruktur.

Тур

In diesem Abschnitt ist die Anzahl der Seiten des Gittermastes zu definieren. Liegt ein *Vier-eckiger Grundriss* vor, sind auch die Seitenverhältnisse anzugeben. Wenn hier die Option *Identische angrenzende Seiten* gewählt wird, erzeugt MAST Struktur einen Turm mit quadratischer Form der horizontalen Ebenen. Sind die Seiten nicht gleich lang, so erscheint im Navigatorbereich die zusätzliche Eingabemaske 1.5 zur Definition der weiteren vertikalen Ausfachungen.

Es ist auch möglich, die vier Mastseiten in Bezug auf ihre Ausfachung unterschiedlich auszubilden. Mit Aktivierung der Option *Unterschiedliche Seiten* werden dann die Masken 1.6 und 1.7 aktiv. Die Masken 1.4 bis 1.7 sind in Kapitel 2.4 ab Seite 15 beschrieben.

Optionen

Sollen die vertikalen Ausfachungen zusätzlich noch abgestützt werden, kann man hier die Option *Innere Ausfachung* aktivieren. Diese Maske ist in Kapitel 2.7 auf Seite 20 erläutert.

Zur Berechnung von Stromleitungsmasten können optional auch *Querarme* ausgewählt werden. Ist das Kontrollfeld aktiviert, wird eine zusätzliche Eingabemaske sichtbar. Die Eingabemöglichkeiten werden in Kapitel 2.8 auf Seite 21 beschrieben.

Mastlager

Hier kann der Anwender den Lagertyp festlegen, der dann in RSTAB generiert wird. Zur Auswahl stehen gelenkige Lager und eine Volleinspannung.

Eckstielaufsatz

Oft werden Maststrukturen an Orten erreicht, an denen keine einheitliche Oberkante für alle drei bzw. vier Eckstiele gegeben ist. Daher bietet MAST Struktur mit der Option *Eckstielaufsatz* dem Anwender die Möglichkeit für jeden Eckstiel eine Versatzhöhe Δ L anzugeben.

Kommentar

Dieses Eingabefeld steht für eine benutzerdefinierte Anmerkung zur Verfügung, die z. B. die aktuelle Maststruktur erläuternd beschreibt.

2.2 Querschnitte

In Maske 1.2 *Querschnitte* definiert der Anwender die zu verwendenden Profile sowie das Material. Die hier eingegebenen Querschnitte stehen dann in den weiterführenden Masken zur Verfügung.

ngabedaten	1.2 Que	rschnitte			
- Masttyp		A	В	A 0	L 100x10
Querschnitte	Quersch.				
Mastschusse	Nr.	Material / Norm	Querschnitt	Kommentar	
Vertikale Austachungen	1	Baustahl S 355 EN 10025-2:2004-11	L 100x10		
Horizontale Gurte	2	Baustahl S 355 EN 10025-2:2004-11	L 150x12		<u>10.0</u>
 Horizontale Austachungen 	3	Baustahl S 355 EN 10025-2:2004-11	L 180x18		
	4	Baustahl S 355 EN 10025-2:2004-11	L 200x22		1 1 2t Kinned
	5	Baustahl S 355 EN 10025-2:2004-11	L 200x24		S 10000
	6	Baustahl S 355 EN 10025-2:2004-11	L 250x24		28.2
	7	Baustahl S 355 EN 10025-2:2004-11	L 250x26		100.0
	8	Baustahl S 355 EN 10025-2:2004-11	L 250x28		+ + + * *
	9	Baustahl S 355 EN 10025-2:2004-11	L 250x250x35 (E		
	10	Baustahl S 355 EN 10025-2:2004-11	L 80x8		z
	11	Baustahl S 355 EN 10025-2:2004-11	L 90x9		
	12	Baustahl S 355 EN 10025-2:2004-11	L 100x10		
	13	Baustahl S 355 EN 10025-2:2004-11	L 100x12		
	14	Baustahl S 355 EN 10025-2:2004-11	L 120x10		0
	15	Baustahl S 355 EN 10025-2:2004-11	L 70x7		
	16	Baustahl S 355 EN 10025-2:2004-11	L 120x12		
	17	Baustahl S 355 EN 10025-2:2004-11	UPE 200		
	18	Baustahl S 355 EN 10025-2:2004-11	HE-A 200		
	19	Baustabl S 355 EN 10025-2:2004-11	HE-A 220		
	20	Baustahl S 355 EN 10025-2:2004-11	HE-A 240		
	21	Baustabl S 355 EN 10025-2:2004-11	HF-A 260		
	22	Baustabl S 355 EN 10025-2:2004-11	UPF 200		
	23	Baustabl S 355 EN 10025-2:2004-11	1.60x6		
	24	Baustabl S 355 EN 10025-2:2004-11	L 100x10		
	25	Baustabl S 355 EN 10025-2:2004-11	L 100x12		
				🔿 🔚	😼 🕒 🎢 🕅 🤅

Bild 2.2: Maske 1.2 Querschnitte

Zum Ändern eines Profils wird die neue Querschnittsbezeichnung in die entsprechende Zeile eingetragen oder das neue Profil aus der Bibliothek ausgewählt. Diese können Sie wie gewohnt mit der Schaltfläche [Querschnittsbibliothek] aufrufen. Alternativ platzieren Sie den Cursor in der gewünschten Zeile und drücken dann [...] oder die Funktionstaste [F7]. Es erscheint die bereits aus RSTAB bekannte Querschnittsbibliothek bzw. Profilreihe.

Die in Maske 1.2 so definierte Querschnittstabelle lässt sich als Datensatz abspeichern und bei Bedarf in jedem anderen MAST-Fall wieder einlesen.

Die Auswahl von Querschnitten aus der Bibliothek ist im Kapitel 5.3 des RSTAB-Handbuchs bzw. Kapitel 5.13 des RFEM-Handbuchs ausführlich beschrieben.

Querschnittsbibliothek		X
Gewalzte Profile	Geschweißte Profile	Massive Querschnitte
ICT	ITT	o t l t
	TTL	II I O L
•- ~ 1		
Zusammengesetzte	TO	
IIIT		l I T
	ΠΠ∓	Eigene und diverse
ŦII	Ĭ+•	🖻 🗎 🕻 🎽
1 I DI	- 1 l	Querschnittsprogramme
••	L	۲
3BD		Abbrechen

Bild 2.3: Querschnittsbibliothek

0

Info über Querschnitt

Zur Kontrolle können über die Schaltfläche [Info] zusätzliche Detailinformationen zu jedem Querschnitt abgerufen werden. Es erscheint ein Dialog mit Querschnittswerten.

Info über Querschnitt L 100x10					×
Querschnittswert-Bezeichnung	Symbol	Wert	Einheit	-	L 100x10
Profilbreite	b	100.0	mm		
Profildicke	s	10.0	mm	1	
Ausrundungsradius innen	r	12.0	mm		
Ausrundungsradius außen	F1	6.0	mm		
Querschnittsfläche	A	1920.0	mm ²	-	
Schubfläche	Au	814.0	mm ²	=	
Schubfläche	Av	791.4	mm ²		
Plastische Schubfläche	A _{pl,u}	1343.5	mm ²		9
Plastische Schubfläche	A _{pl,v}	1343.5	mm ²		
Abstand der Schwerachse	ey	28.2	mm		
Trägheitsmoment (Flächenmoment 2. Grac	ly	1770000.0	mm ⁴		8 38
Flächenzentrifugalmoment	lyz	1030000.0	mm ⁴		28.2
Hauptachsenwinkel	α	-45.00	٠		100.0
Trägheitsmoment (Hauptachsen-Flächenm	lu -	2800000.0	mm ⁴		100.0
Trägheitsmoment (Hauptachsen-Flächenm	lv .	733000.0	mm ⁴		v
Trägheitsradius	iy	30.4	mm		
Trägheitsradius	iyz	23.2	mm		z
Trägheitsradius (Hauptachsen)	iu	38.2	mm		
Trägheitsradius (Hauptachsen)	iv	19.5	mm		
Polarer Trägheitsradius	ip	43.0	mm		
Volumen	V	1920000.0	mm ³ /m		
Querschnittsgewicht	G	15.1	kg/m		
Mantelfläche	U	0.390	m²/m		
Profilfaktor	Am/V	203.125	1/m		📰 🔝 Spannungspunkte 🔛 🚰 🐼
Torsionsträgheitsmoment	lt	65233.3	mm ⁴		💼 📷 (c/t)-Querschnittsteile 🔛
Schubmittelnunkt-Lage bezogen auf S	l una	-23.2	mm	*	
					Schließen

Bild 2.4: Dialog Info über Querschnitt

Zudem können die *Spannungspunkte* und *Querschnittsteile* für den c/t-Nachweis zur Anzeige gebracht werden. Im rechten Teil der Maske wird der aktuelle Querschnitt grafisch dargestellt.

Die Schaltflächen unterhalb der Grafik sind mit folgenden Funktionen belegt:

Schaltfläche	Funktion
Ŧ	Die Spannungspunkte werden angezeigt oder ausgeblendet.
	Die (c/t)-Querschnittsteile werden angezeigt oder ausgeblendet.
[23]	Die Nummerierung der Spannungspunkte bzw. (c/t)-Querschnittsteile wird ein- oder ausgeblendet.
1	Die Details der Spannungspunkte bzw. (c/t)-Querschnittsteile wird ein- oder ausgeblendet.
X	Die Bemaßung des Querschnitts wird ein- oder ausgeblendet.
\$⇒	Die Hauptachsen des Profils werden ein- oder ausgeschaltet.
X	Der gesamte Querschnitt wird angezeigt.
	Das Ausdrucken der Querschnittsinformationen wird ermöglicht.

Tabelle 2.1: Schaltflächen der Querschnittsgrafik

Material / Norm

In Spalte A der Maske 1.2 kann man über das Pulldownmenü *Material* direkt auswählen. Es stehen dabei die Materialien der in der Bibliothek ausgewählten Norm bzw. Normengruppe zur Verfügung.

Materialbibliothek

Eine Vielzahl von Materialien ist in einer Bibliothek hinterlegt. Diese wird aufgerufen über die links dargestellten Schaltflächen oder die Funktionstaste [F7].

rilter	Material zum Übernehme	n				
	Baustahl S 235		EN 10025-2:2004-11			
Material-Kategorie:	Baustahl S 275		EN 10025-2:2004-11			
Stahl 👻	Baustabl S 355		EN 10025.2	2004.11		
New Courses	Daustahl S 450		EN 10025 2	>2004 11		
Norm-Gruppe:	Daustarii 5 400		EN 10023-2	2004-11		
EN						
Norro:						
EN 10025 2:2004 11						
EN 10025-2:2004-11						
Anzeigen:						
- Materialian von 'alten' Norman						
			1			
Nur Favoriten	🛅 🕾 🔒				×	
Materialkennwerte	J		Baustahl S 355	EN 10025	-2:2004-1	
Materialkennwerte		E	Baustahl S 355	EN 10025-	-2:2004-1	
Materialkennwerte ☐ RSTAB-Relevante Elastizitatsmodul Schubmodul		EG	Baustahl S 355 210000.000 81000.000	EN 10025- MPa MPa	-2:2004-1	
Materialkennwerte RSTAB-Relevante Elastizitätsmodul Schubmodul Poissonsche Zahl (Querdehnza	h))	E G L	Baustahl S 355 210000.000 81000.000 0.300	I EN 10025- MPa MPa	-2:2004-1	
Materialkennwerte RSTAB-Relevante Elastizitätsmodul Schubmodul Poissonsche Zahl (Querdehnza Spezifisches Gewicht	hi)	E G μ	Baustahl S 355 210000.000 81000.000 0.300 78.50	I EN 10025- MPa MPa kN/m ³	-2:2004-1	
Materialkennwerte Bastizitätsmodul Schubmodul Poissonsche Zahl (Querdehnza Spezifisches Gewicht Temperaturdehnzahl (Wärmede	hi)	Ε G μ γ	Baustahl S 355 210000.000 81000.000 0.300 78.50 1.2000E-05	MPa MPa kN/m ³ 1/°C	-2:2004-1	
Materialkenn werte RSTAB-Relevante Elastizitätsmodul Schubmodul Poissonsche Zahl (Querdehnza Spezifisches Gewicht Temperaturdehnzahl (Wärmede Teilsicherheitsbeivert	hl) hnzahl)	E G μ 7 α 7Μ	Baustahl S 355 210000.000 81000.000 0.300 78.50 1.2000E-05 1.00	EN 10025- MPa MPa kN/m ³ 1/°C	-2:2004-1	
Materialkenn werte RSTAB-Relevante Bastizitätsmodul Schubmodul Poissonsche Zahl (Querdehnza Spezifisches Gewicht Temperaturdehnzahl (Wämede Teilsicherheitsbeiwert Bemessungs-Relevante	hi) hnzahi)	E G μ γ α γΜ	Baustahl S 355 210000.000 81000.000 0.300 78.50 1.2000E-05 1.00	EN 10025- MPa MPa kN/m ³ 1/°C	-2:2004-1	
Materialkenn werte RSTAB-Relevante Elastizitätsmodul Schubmodul Poissonsche Zahl (Querdehnza Spezifisches Gewicht Temperaturdehnzahl (Wärmede Teilsicherheitsbeiwert Bemessungs-Relevante Streckgrenze	hi) hnzahi)	E G μ γ α γ γ β	Baustahl S 355 210000.000 81000.000 0.300 78.50 1.2000E-05 1.000 355.000	EN 10025- MPa MPa kN/m ³ 1/°C MPa	-2:2004-1	
Materialkennwerte Bastizitätsmodul Schubmodul Poissonsche Zahl (Querdehnza Spezifisches Gewicht Temperaturdehnzahl (Wärmede Teilsicherheitsbeiwert Benessungs-Relevante Streckgrenze Zugfestigkeit	hi) hnzahi)	E G μ γ α γ γ Μ	Baustahl S 355 210000.000 81000.000 0.300 78.50 1.2000E-05 1.00 355.000 510.000	EN 10025- MPa MPa kN/m ³ 1/°C MPa MPa	-2:2004-1	
Materialkennwerte Bastizitätsmodul Schubmodul Schubmodul Poissonsche Zahl (Querdehnza Spezifisches Gewicht Temperaturdehnzahl (Wärmede Teilsicherheitsbeiwert Benessungs-Relevante Streckgrenze Zugfestigkeit Maximale Bautelldicke	hl) hnzahl)	E G μ γ α γ Μ fy fu t1	Baustahl S 355 210000.000 81000.000 0.300 78.50 1.2000E-05 1.00 355.000 510.000 40.0	EN 10025- MPa MPa kN/m ³ 1/°C MPa MPa mm	-2:2004-1	
Materialkennwerte RSTAB-Relevante Eastizitätsmodul Schubmodul Poissonsche Zahl (Querdehnza Spezifisches Gewicht Temperaturdehnzahl (Wärmede Teilsicherheitsbeiwert Benessungs-Relevante Streckgrenze Zugfestigkeit Maximale Bauteildicke Streckgrenze	hl) hnzahl)	E G μ γ α γ Μ f _y f _u t1 f _{y,2}	Baustahl S 355 210000.000 81000.000 78.50 1.2000E-05 1.00 510.000 510.000 40.0 335.000	EN 10025- MPa MPa kN/m ³ 1/°C MPa MPa mm MPa	2:2004-1	
Materialkennwerte RSTAB-Relevante Eastizitätsmodul Schubmodul Poissonsche Zahl (Querdehnza Spezifisches Gewicht Temperaturdehnzahl (Wärmede Beinessungs-Relevante Streckgrenze Zugfestigkeit Maximale Bauteildicke Streckgrenze Zugfestigkeit	hl) hnzahl)	E G μ γ α γ M Fy fu t1 fy,2 fu,2	Baustahl S 355 210000.000 81000.000 0.300 78.50 1.2000E-05 1.00 355.000 510.000 40.0 335.000 470.000	EN 10025- MPa MPa 1/°C MPa MPa mm MPa MPa	-2:2004-1	
Materialkennwerte Bastizitätsmodul Schubmodul Poissonsche Zahl (Querdehnza Spezifisches Gewicht Temperaturdehnzahl (Wärmede Teilsicherheitsbeiwert Benessungs-Relevante Streckgrenze Zugfestigkeit Maximale Bauteildicke Streckgrenze Zugfestigkeit Maximale Bauteildicke Streckgrenze	hi) hnzahi)	E G μ γ α γ M fu t1 fy fu t1 fy,2 fu.2 fu.2 t2	Baustahl S 355 210000.000 81000.000 0.300 78.50 1.2000E-05 1.2000E-05 1.000 510.000 40.0 335.000 470.000 80.0 80.0	I EN 10025- MPa MPa I/°C MPa MPa MPa MPa mm	-2:2004-1	
Materialkennwerte Bastizitätsmodul Schubmodul Schubmodul Poissonsche Zahl (Querdehnza Spezifisches Gewicht Temperaturdehnzahl (Wärmede Teilsicherheitsbeiwert Benessungs-Relevante Streckgrenze Zugfestigkeit Maximale Bauteildicke Streckgrenze Zugfestigkeit Maximale Bauteildicke Koeffizient für Grenz-Schweißnz	hi) hnzahi) ahtspannungen	E G μ γ α γ γ δ γ fu t1 fy,2 fu,2 t2 α _w	Baustahl S 355 210000.000 81000.000 78.50 1.2000E-05 1.2000E-05 1.000 510.000 510.000 40.0 335.000 470.000 80.0 0.800	I EN 10025- MPa MPa kN/m ³ 1/°C MPa MPa MPa mm MPa mm	2:2004-1	

Bild 2.5: Dialog Material aus Bibliothek übernehmen

Baustahl S 235 | EN 10025-2: 2004-11_ 🚬 ...

 Baustahl S 275
 EN 10025-2: 2004-11

 Baustahl S 355
 EN 10025-2: 2004-11

 Baustahl S 450
 EN 10025-2: 2004-11

0K

Im Abschnitt *Filter* ist die Materialkategorie *Stahl* voreingestellt. Aus der rechts davon befindlichen Liste *Material zum Übernehmen* können Sie ein Material auswählen und dessen Kennwerte im unteren Bereich des Dialogs kontrollieren. Mit [OK] oder [,] wird es in die Maske 1.2 von MAST-Struktur übernommen.

Im Kapitel 5.2 des RSTAB-Handbuchs ist ausführlich beschrieben, wie Materialien gefiltert, ergänzt oder neu sortiert werden können.

2.3 Mastschüsse

Die Eckstiele von Gittermasten können verschiedene Anordnungen über die Höhe haben. So verlaufen sie im unteren Bereich meist nicht parallel, und der Mast verjüngt sich nach oben hin. In der Maske 1.3 *Mastschüsse* hat der Anwender die Möglichkeit, die Geometrie der Konstruktion mit den so genannten Mastschüssen zu definieren.

Bild 2.6: Maske 1.3 Mastschüsse

Gesamtabmessungen

Im oberen Bereich der Maske definiert man die *Gesamthöhe H*. Zusätzlich muss die Startbreite des ersten Mastschusses b_F definiert werden. Bei Masten mit einem quadratischen Querschnitt ist das Feld b_L deaktiviert.

Neigungen der Eckstiele definieren

Hier hat der Anwender zwei Auswahlmöglichkeiten. Es kann die jeweilige Startbreite eines Mastschusses angegeben werden. Hier ermittelt das Modul die Neigung über Mastschusshöhe und Differenz der Breiten. Weiterhin ist es möglich, die Neigung über eine Breitenzunahme in [mm/m] anzugeben. Die Mastschussbreiten werden dann automatisch ermittelt.

Erklärend kann im rechten Bereich ein Schema eingeblendet werden. Hier werden die in den Tabellen verwendeten Variablen dargestellt.

Mastschüsse

=

In der mittleren Tabelle definiert man die Mastschüsse über ihre Höhe h, die Breite b oder die Breitenzunahme. Welcher Teil der Tabelle dabei aktiv ist, wird über die zuvor gemachte Einstellung der Neigungsdefinition entschieden.

Mastschuss - Querschnitte

Jedem Teilbereich des Mastes muss ein Querschnitt zugewiesen werden. Dazu wählt man mit dem Mauszeiger einen Mastschuss in der mittleren Tabelle aus und weist diesem dann einen Querschnitt aus Spalte C in der unteren Tabelle zu. Dabei greift der Anwender auf die Profile zurück, welche in Maske 1.2 *Querschnitte* definiert wurden. Möchte man für einen Mastschuss verschiedene Querschnitte verwenden, so sind zuerst die Teilhöhen h in Spalte B der unteren Tabelle festzulegen. Danach kann wie gewohnt ein Querschnitt zugewiesen werden. Bei einer großen Anzahl von Unterteilungen kann das Zuweisen gleicher Querschnitte mit der Schaltfläche [=] für die folgenden Zeilen erfolgen.

Zur Visualisierung der bisher eingegebenen Strukturdaten stehen verschiedene Schaltflächen zur Verfügung. In der folgenden Tabelle werden diese erläuternd dargestellt:

Schaltfläche	Funktion
< ▶	Wechsel zwischen den Zeilen der Tabelle Mastschüsse
Ņ	Wechsel zwischen der mittleren und unteren Tabelle
	Anzeige der schematischen Darstellung oder des Modells
P	Ein- und Ausblenden der Strukturknoten
B	Anzeige des Drahtmodells oder des gerenderten Modells
TX TY TZ	Ansicht des Modells in Richtung der Achsen X, -Y und Z
	Anzeige der isometrischen Ansicht

Tabelle 2.2: Schaltflächen zur Visualisierung der Strukturdaten

2.4 Vertikale Ausfachungen

Zur Stabilisierung der Eckstiele kann man in Maske 1.4 vertikale Ausfachungen definieren. Dazu ist die Maske in zwei Bereiche untergliedert.

Bild 2.7: Maske 1.4 Vertikale Ausfachungen

In der oberen Tabelle wird die Geometrie festgelegt. Die *Höhe h* wird dabei als Empfehlung aus der Maske 1.3 *Mastschüsse* übernommen. Werden die Feldhöhen geringer als die Mastschusshöhe angegeben, so erzeugt das Modul automatisch ein weiteres Ausfachungsfeld.

Zur Definition des Ausfachungstyps verfügt das Modul MAST Struktur über eine Datenbank, in der die üblichen Anordnungen von vertikalen *Ausfachungen* hinterlegt sind. Zum Öffnen der Datenbank (siehe Bild 2.8) platzieren Sie den Cursor in der relevanten Zeile der Spalte D und drücken dann [...] oder die Funktionstaste [F7].

....

Bild 2.8: Datenbank der Ausfachungsgeometrien für vertikale Ausfachungen

Parameter und Teilungsabstände

Die vorhandenen Datensätze können über die Parameter *Anzahl der Teilungen* und *Bezugslänge* angepasst werden. Dabei werden vom Modul automatisch Teilungen in der Tabelle Teilungsabstände angelegt. Diese kann der Anwender nachträglich noch manuell ändern. Es wird dabei die oben definierte Bezugslänge berücksichtigt und die Längen der jeweiligen Teilungen angepasst.

2.4.1 Benutzerdefinierte Ausfachungstypen

Die Datenbank ist mit selbstdefinierten Ausfachungstypen beliebig erweiterbar. Durch Drücken der links dargestellten Schaltfläche öffnet sich ein neues Bearbeitungsfenster. Zur einfachen Erstellung einer benutzerdefinierten Geometrie empfiehlt es sich, eine Vorlage aus der Datenbank zu nutzen.

Die Generierung der Ausfachungsstäbe basiert auf der Verwendung von Linien, die sich wiederum an Bezugslinien orientieren. Dabei wird der Start- und Endpunkt einer Linie über den Relativabstand zum Beginn oder Ende einer Bezugslinie definiert. Alle Eingaben werden direkt in der Grafik auf der rechten Seite dargestellt. Zur besseren Übersicht kann die Liniennummerierung und die Linienorientierung über die beiden Schaltflächen aktiviert werden.

eine A	usfachung				
nien fü	r Stäbe				
	A	В	C	D	*
Linie	Linien-/	Anfang	Linien-	Ende	
Nr	Bezugslinie Nr.	Abstand [-]	Bezugslinie Nr.	Abstand [-]	
5	2	0.000	4	0.000	
6	4	1.000	2	1.000	
7					
8					
9					E 2
10					
11					
12					
13					
14					
äbe de	er Ausfachung				
	A	B	C	D	
Nr	Linie	Stab a		Querschnitt	
141.	Nr.	Von [-]	Bis [-]	INF.	
-	5	0.000	1.000	1	
2	6	0.000	1.000	1	
-					
3					
3					
3 4 5					
3 4 5 6					
3 4 5 6 7					
3 4 5 6 7 8					
3 4 5 6 7 8 9					[[73]

Bild 2.9: Dialog Benutzerdefinierte Ausfachung bearbeiten

Hat man eine benutzerdefinierte Ausfachung erstellt, vergibt man noch einen Namen und verlässt die Maske mit [OK]. Aus der Datenbank wechselt man dann ebenfalls mit [OK].

Nun muss der Ausfachung noch ein Querschnitt zugewiesen werden. Dazu wählt man im oberen Teil der Maske 1.4 ein Ausfachungsfeld aus und vergibt dann in der unteren Tabelle einen Querschnitt.

Wird in Maske 1.1 die Option *Identische Gegenseiten* aktiviert, so definiert man in Maske 1.4 Vertikale Ausfachungen – Seiten F, B und in Maske 1.5 Vertikale Ausfachungen – Seiten L, R. Mit der dritten Option *Unterschiedliche Seiten* erfolgt die Definition der vertikalen Ausfachung für die Seiten F,L,B und R in den Masken 1.5 bis 1.7.

123

2.5 Horizontale Gurte

An den Übergängen der Mastschüsse kann man in Maske 1.8 horizontale Gurte definieren.

gabedaten	1.8 Hori	zontale G	urte					
Masttyp		A	В	С	(D	E	F	
Querschnitte	Kote	Kote		Seite F		Seite L	:	
Mastschüsse	Nr.	z [m]	Anwenden	Querschnitt	Vorhanden	Querschnitt	Vorhanden	
Vertikale Ausfachungen - F	1	25.000	×	4 - L 50x5	×	4 - L 50x5	× 4	1 N N
Vertikale Ausfachungen - L	2	24.000	×	4 - L 50x5	×	4 - L 50x5	× 4	
Vertikale Ausfachungen - B	3	23.000	×	4 - L 50x5	×	4 - L 50x5	× 4	5 M
Vertikale Ausfachungen - R	4	22.000	×	4 - L 50x5	×	4 - L 50x5	× 4	(AUN)
Horizontale Gurte	5	21.000	×	4 - L 50x5	×	4 - L 50x5	× 4	
Horizontale Ausfachungen	6	19.000	×	3 - L 70x7	×	3 - L 70x7	X ((AQX)
Innere Ausfachungen	7	17.000	×	3 - L 70x7	×	3 - L 70x7	X (
Querarme	8	15.000	×	3 - L 70x7	×	3 - L 70x7	X (LXIX I
	9	13.000	×	3 - L 70x7	×	3 - L 70x7	X (
	10	9.000	×	3 - L 70x7	×	3 - L 70x7	× :	
	11	5.000	×	3 - L 70x7	×	3 - L 70x7	× :	
	12	0.000						N/AM
	4			111				
							a	🍬 💽 😰 😿 😿

Bild 2.10: Maske 1.8 Horizontale Gurte

Bei gleichen Seitenwandlängen des Mastes sind die Spalten D bis I inaktiv. Die Definitionen aus Spalte B und C werden hier automatisch übernommen. Bei Auswahl nicht identischer Seitenlängen in Maske 1.1 (siehe Kapitel 2.1, Seite 8) können die horizontalen Gurte für die jeweiligen Seitenwände definiert werden.

2.6 Horizontale Ausfachung

Zur zusätzlichen Aussteifung können in der Ebene der horizontalen Gurte horizontale Ausfachungen in verschiedenen Ausführungen definiert werden.

Bild 2.11: Maske 1.9 Horizontale Ausfachung

Auch hier bietet das MAST-Modul eine Datenbank mit vordefinierten Anordnungen von Stäben für Ausfachungen an. Möchte man jedoch eine benutzerdefinierte horizontale Ausfachung verwenden, so lässt sich diese analog der Beschreibung in Kapitel 2.4.1 auf Seite 17 erstellen.

2.7 Innere Ausfachungen

	1 4.10 1111	ere Ausrachung	gen					
Masttyp	ľ	A	В	C	D		E	
Querschnitte		Kote oben	Höhe		Typ der		Anzahl	_
Mastschusse	Nr.	z ; [m]	h [m]	Anwenden	Ausfachung		Teilungen	V 🖓 🕅 🖌 🗙
Vertikale Austachungen	1	5.000	5.000	×	Diagonale aufwärts	×	2	
Horizontale Guite					X-Diagonalen			
Innere Ausfachungen					Diagonale aufwärts			
Innere Austachungen					Diagonale abwarts	15		l XX
					K-Diagonalen unter			(A)
					Knombus-Diagonalen			I DXXX
					Horizontalen	_		l Min
								l DATA
								ND A
								I I/XIZTA
	Innere A	usfachung Nr.						
		A			В			
	Nr.	Quersch	nitt		Kommentar			
	1	4 - L 50x5						
	2	4 - L 50x5						
								· · ·

Bild 2.12: Maske 1.10 Innere Ausfachungen

Sind die Ausfachungsstäbe der Seitenwände sehr schlank, so kann es notwendig werden, die Knicklänge durch konstruktive Maßnahmen zu reduzieren. Dazu bietet das Modul MAST-Struktur die inneren Ausfachungen an. Die Definition erfolgt für jeden Mastschuss separat, dadurch ist eine individuelle Anpassung an die statischen Erfordernisse möglich.

5

Die Maske 1.10 Innere Ausfachungen ist nur aktiv, wenn in den Masken 1.4 bzw. 1.5 bis 1.7 vertikale Ausfachungstypen gewählt wurden, für die eine zusätzliche Aussteifung sinnvoll ist. Da die inneren Ausfachungen für alle vier Mastseiten gleich definiert werden, muss bei ungleichmäßigen Seitenlängen für alle Seiten ein Ausfachungstyp gewählt werden, der eine innere Ausfachung erlaubt.

E
Anzahl
Teilungen
4
4 😽

Im oberen Teil der Maske aktiviert man in Spalte C die vorhandenen Ausfachungen und weist diesen einen Ausfachungstyp zu. In Spalte E ist es möglich, die Anzahl der Teilungen auszuwählen. Hier kann direkt eine Zahl eingegeben werden oder man nutzt die Schaltflächen, welche bei Anwahl der Tabellenzelle aktiv werden.

Die Datenbank der inneren Ausfachungen ist auf die geometrischen Randbedingungen abgestimmt. Auch hier kann der Anwender benutzerdefinierte Ausfachungstypen anlegen. Die Bedienung der Datenbank ist in Kapitel 2.4 auf Seite 15 näher erläutert.

Bild 2.13: Datenbank der Ausfachungsgeometrien für innere Ausfachungen

2.8 Querarme

In Maske 1.11 *Querarme* können Ausleger für die Auflagerung von Stromleitungen generiert werden. Diese Maske ist anwählbar, wenn die Option *Querarme* in Maske 1.1 aktiv ist.

Bild 2.14: Maske 1.11 Querarme

2 Eingabedaten

....

Zur Definition der Querarme verfügt das Modul MAST Struktur über eine Datenbank, in der die verschiedensten Ausführungen von Auslegern hinterlegt sind. Zum Öffnen der Datenbank platzieren Sie den Cursor in der gewünschten Zeile der Spalte A und drücken dann [...] oder die Funktionstaste [F7].

Bild 2.15: Datenbank für Querarme

In Spalte B kann der ausgewählte Ausleger den Mastseiten zugeordnet werden. Über die Spalte C steuert der Anwender die Höhe, in der ein Querarm positioniert ist. Im unteren Teil der Maske 1.11 können verschiedene Parameter des Auslegers angepasst werden. Neben den geometrischen Bedingungen können hier natürlich auch das Material und die Querschnitte der einzelnen Bauteile angepasst werden.

3. Generierte Daten

Generieren

Sind alle Daten vollständig eingegeben, startet man die Generierung der Maststruktur mit der Schaltfläche [Generieren]. Stellt das Modul dabei fehlerhafte oder fehlende Einträge in den Eingabemasken fest, so erhält man eine entsprechende Fehlermeldung.

ĺ	MAST Struktur Fehler Nr. 2030
	Unzulässige Eingabe! Mastschuss Nr. 1 Querschnitt Nr. 2 wurde nicht definiert.
	Bitte korrigieren Sie die Eingabe in Maske 1.3.
l	

Durch die genaue Angabe der betroffenen Eingabemaske kann eine Korrektur schnell vorgenommen werden.

3.1 Stabendgelenke

Eingabedaten	2.1 Gen	erierte Daten - Sta	bendgelenke					
Masttyp		A	B	C	D	F	F	
Querschnitte	Stab			Gelenk a	m Anfang	Gelenk a	m Ende	×
Mastschüsse	Nr.	Querschnitt	Stabtyp	Mv	Mz	Mv	Mz	
	213	4 - 1 50x5	Balkenstab				2	
		1 20010	Dairtoriotab					
Vertikale Ausfachungen - B		Horizontaler Gurt	- Seite I - Kote 19	000 m				
- Vertikale Ausfachungen - R	214	3-1 70x7	Balkenstab			×		
- Horizontale Gurte								
Horizontale Ausfachungen		Horizontaler Gurt	- Seite L - Kote 17.	000 m				THE REAL PROPERTY OF A DECEMBER OF A DECEMBE
- Innere Ausfachungen	215	3 - L 70x7	Balkenstab	×	×	×	×	
Querarme								- NBA
Generierte Daten		Horizontaler Gurt	- Seite I - Kote 15	000 m				
Stabendgelenke	216	3 - L 70x7	Balkenstab		×	X	×	
Stabdrehungen								
- Stückliste		Horizontaler Gurt	- Seite L Kote 13.	000 m				- NAA
	217	3 - L 70x7	Balkenstab		X	×	×	- 194AX
		Horizontaler Gurt	- Seite L Kote 9.0	00 m				- KAYA
	218	3 - L 70x7	Balkenstab	×	×	×	×	
					_	_		
		Horizontaler Gurt	- Seite L - Kote 5.0	00 m				
	219	3 - L 70x7	Balkenstab	×	×			
	220	3 - L 70x7	Balkenstab			×	8	
				_	_	_	_	
		Horizontaler Gurt	- Seite B - Kote 25.	000 m				
	221	4 - L 50x5	Balkenstab	×	×	×	×	
						_	_	•
		Horizontaler Gurt	- Seite B - Kote 24.	000 m				
	222	4 - L 50x5	Balkenstab	×	×	×	×	
							_	🗳 🛃 👫 🗄

Nach erfolgreicher Generierung erhält man in der Ergebnismaske 2.1 die Übersicht der Stabendgelenke.

Die Tabelle ist übersichtlich in die einzelnen Baugruppen unterteilt. Das Modul hat bei der Generierung den entsprechenden Bauteilen bereits Stabendgelenke zugewiesen. Der Anwender kann diese nach den individuellen Erfordernissen einfach anpassen. Dazu muss lediglich der jeweilige Freiheitsgrad in Spalte C bis F an- oder ausgeschaltet werden. Eine Änderung der Stabendgelenke ist auch nach dem Export in RSTAB/RFEM möglich.

Bild 3.1: Fehlermeldung

Bild 3.2: Maske 2.1 Stabendgelenke

3.2 Stabdrehungen

Diese Maske enthält Informationen über die Hauptachsneigung α und den Stabdrehwinkel β .

igabedaten	2 2 Gen	erierte Daten - Sta	bdrebungen				
Masttyp	Piz Och		D	C [D		
Querschnitte	Stab		Hauptachse-	Stab-		- 1	×
- Mastschüsse	Nr.	Querschnitt	Neigung a [°]	Drehung 6 [°]			
Vertikale Ausfachungen - F	251	4 - 1 50x5	-45.00	180.00			<u>х так так так так так так так так так так</u>
Vertikale Ausfachungen - L	252	4 - 1 50x5	-45.00	180.00			
Vertikale Ausfachungen - B		1 2 0 0 0	10.00	100.00			
Vertikale Ausfachungen - R		Horizontale Ausfa	chungen - Kote 2	21 000 m			
Horizontale Gurte	253	4 - L 50x5	-45.00	180.00			I WAN
Horizontale Ausfachungen	254	4 - L 50x5	-45.00	180.00			
Innere Ausfachungen	255	4 - L 50x5	-45.00	180.00			
Querarme	256	4 - L 50x5	-45.00	180.00			I MARA
nerierte Daten							
Stabendgelenke		Horizontale Ausfa	chungen - Kote 1	17.000 m			I XXXX
Stabdrehungen	257	3 - L 70x7	-45.00	180.00			
- Stückliste	258	3 - L 70x7	-45.00	180.00			I NAM
	259	3 - L 70x7	-45.00	180.00			17 %/ 4XV
	260	3 - L 70x7	-45.00	180.00			
		Horizontale Ausfachungen - Kote 13.000 m					
	261	3 - L 70x7	-45.00	180.00			
	262	3 - L 70x7	-45.00	180.00			KARA A
	263	3 - L 70x7	-45.00	180.00			
	264	3 - L 70x7	-45.00	180.00			L RAMAN
		Horizontale Ausfa	chungen - Kote 5	5.000 m			
	265	2 - L 90x9	-45.00	180.00			1 · · · · · · · · · · · · · · · · · · ·
	266	2 - L 90x9	-45.00	180.00			-
	267	2 - L 90x9	-45.00	180.00		Ξ	
	268	2 - L 90x9	-45.00	180.00			
	269	2 - L 90x9	-45.00	180.00		-	🔁 💶 🛌 6X 6-Y 6

Bild 3.3: Maske 2.2 Stabdrehungen

Die Ergebnisse sind hier in Bauteilgruppen eingeteilt. Dies kann sehr hilfreich sein, wenn die Winkel mehrerer Stäbe eines Bereichs geändert werden sollen. Es ist dann ausreichend, den Zahlenwert des ersten zu ändernden Stabdrehwinkels einzugeben. Die folgenden Zellen können mit Hilfe der Taste [F8] mit dem gleichen Wert belegt werden. Die manuelle Anpassung der Stabdrehung kann sinnvoll sein zur Anpassung der Schenkelausrichtung von L-Profilen in Bezug auf die Neigung der Mastseiten.

3.3 Stückliste

In Maske 2.3 erhält man eine detaillierte Übersicht der verwendeten Querschnitte.

edaten 2.3 Ger	erierte Da	ten - Stück	liste						
sttyp	С	D	F	F	G	н			
erschnitte Position	Länge	G-Länge	Oberfläche	Volumen	E-Gewicht	Gewicht	G-Gewicht		_X
stschüsse Nr.	[m]	[m]	[m ²]	[m 3]	[kg/m]	[kg]	R1		
tikale Ausfachungen - F 15	1.507	12 057	3.28	0.01	7.38	11 12	0 089		
tikale Ausfachungen - L 16	1 4 3 7	5 747	1.56	0.01	7.38	10.60	0.042		
tikale Ausfachungen - B 17	1.345	5.378	1.46	0.01	7.38	9.92	0.040		
tikale Ausfachungen - R 18	1,199	4.795	1.30	0.00	7.38	8.84	0.035		56K
izontale Gurte 19	1.016	4.064	1,11	0.00	7.38	7.50	0.030		6 S.N.
izontale Ausfachungen 20	1.000	16.000	4.35	0.02	7.38	7.38	0.118		
ere Ausfachungen 21	2.702	21.620	4.19	0.01	3.77	10.18	0.081		2 A.A.
erarme 22	2.685	21.480	4.17	0.01	3.77	10.12	0.081		0.02.54
erte Daten 23	2.524	20.192	3.92	0.01	3.77	9.51	0.076		
bendgelenke 24	2.132	17.054	3.31	0.01	3.77	8.03	0.064		NO NO
bdrehungen 25	2.019	16.148	3.13	0.01	3.77	7.61	0.061		
ckliste 26	1.430	11.443	2.22	0.01	3.77	5.39	0.043		M A A
27	1.387	22,186	4.30	0.01	3.77	5.22	0.084		17XIAX1
28	1.359	10.872	2.11	0.01	3.77	5.12	0.041		
29	1.329	10.634	2.06	0.01	3.77	5.01	0.040		KAL A
30	1.307	10.459	2.03	0.01	3.77	4.93	0.039		
31	1.263	10.107	1.96	0.00	3.77	4.76	0.038	Ξ.	
32	1.251	10.010	1.94	0.00	3.77	4.71	0.038		
33	1.174	9.391	1.82	0.00	3.77	4.42	0.035		
34	1.091	8.725	1.69	0.00	3.77	4.11	0.033		
35	1.066	4.263	0.83	0.00	3.77	4.02	0.016		W WHY N
36	1.057	8.452	1.64	0.00	3.77	3.98	0.032		
37	1.013	8.100	1.57	0.00	3.77	3.82	0.031		· · · · ·
38	0.961	19.212	3.73	0.01	3.77	3.62	0.072		•
39	0.679	8.151	1.58	0.00	3.77	2.56	0.031		
Summe		459.213	119.50	0.44			3.421	-	
<					III			F L	🗳 💽 📂 🕅 🖓

Bild 3.4: Maske 2.3 Stückliste

Neben den Einzellängen und Gewichten werden hier auch Informationen zur Oberfläche ausgegeben. Diese Informationen sind hilfreich für die Auswahl der Art des Korrosionsschutzes.

Exportieren

Zur weiteren Bearbeitung der Struktur, d. h. als Basis für die Eingaben in den Modulen MAST-Anbauten und MAST-Belastung, müssen die generierten Daten nach RSTAB/RFEM exportiert werden. Dies erfolgt durch Drücken der Schaltfläche [Exportieren].

Durch das Ausführen der Exportfunktion werden alle in RSTAB/RFEM bereits vorhandenen Strukturdaten überschrieben. Deshalb erscheint vorher eine entsprechende Warnung.

? ^{MA}	ST Struktur			
Die Position trotzdem der durchführen	enthält Daten, die Export durchführ ?	durch den Export übe en, oder wollen Sie de	erschrieben werden. Wolle en Export in eine neue Pos	n Sie ition
	Exportieren	Exportieren unter	Abbrechen]
Bild 3.5: War	nung vor Export	: der Daten		

Exportieren

4. Allgemeine Funktionen

Über die Menüleiste am oberen Rand der Maske sind verschiedene allgemeine Funktionen möglich.

4.1 MAST-Fall löschen

Es besteht die Möglichkeit einen MAST-Fall zu löschen über MAST-Menü

Datei → Fall löschen.

Nach dem Bestätigen der Auswahl wird der Fall gelöscht und das Modul geschlossen. Bereits exportierte Daten bleiben in RSTAB/RFEM erhalten.

4.2 Einheiten und Dezimalstellen

Die Einheiten und Nachkommastellen werden für RSTAB/RFEM sowie für sämtliche Zusatzmodule zentral verwaltet. Im Modul **MAST Struktur** ist der Dialog zum Einstellen der Einheiten zugänglich über das Menü

Einstellungen \rightarrow Einheiten und Dezimalstellen.

Es wird der aus RSTAB/RFEM bekannte Dialog aufgerufen. Das MAST-Modul ist voreingestellt.

Einheiten und Dezimalstel	len -	Metrisch *					×
Programm / Modul 	*	RX-MAST Struktur Geometriedaten	Einheit	DezStellen	Stückliste	Einheit	DezStellen
C-ZU-T 	Ш	Längen: Breitenzunahmen: Winkel: Relative Längen:	m ▼ mm/m ▼ ∘ ▼		Längen: Gesamtllängen: Oberflächen: Volumina: Massen pro Länge: Massen: Gesamtmassen:	m • m • m^2 • m^3 • kg/m • kg • t •	3 3 2 2 2 2 2 2 2 3 2
VERBIND RAHMECK Pro RAHMECK DSTV STABDÜBEL HOHLPROF RSKNICK DEFORM RSBEWEG Stabe RSIMP MAST Struktur MAST Anbauten	•						
	œ]				ОК	Abbrechen

Bild 4.1: Dialog Einheiten und Dezimalstellen

Die Einstellungen können als Benutzerprofil gespeichert und in anderen Positionen wieder verwendet werden.

5. MAST Anbauten

5.1 Einleitung

Die in **MAST Struktur** erzeugten Konstruktionen dienen als Tragkonstruktionen für Sendeantennen und weitere Anbauteile wie Bühnen, Leitern und Kabelschächte. Da die Berücksichtigung dieser Bauteile, speziell der Antennen, bei der Bemessung der Konstruktion unerlässlich ist, stellt die DLUBAL GMBH mit dem Zusatzmodul **MAST Anbauten** dem Anwender ein effektives Werkzeug zur Verfügung, um eine komplette Sendeanlage mit allen bemessungsrelevanten Anbauteilen in kürzester Zeit modellieren zu können. Dabei unterstützt Sie der einfache und übersichtliche Aufbau des Moduls. Die Definition einzelner Komponenten gestaltet sich durch eine datenbankgestützte Eingabe sowie informative Grafiken als einfach zu lösende Aufgabe.

5.2 Aufruf des Moduls

Es bestehen in RSTAB/RFEM zwei Möglichkeiten, das Zusatzmodul **MAST Anbauten** zu starten.

Menü

Der Programmaufruf kann erfolgen über das Pulldownmenü

 $\textbf{Zusatzmodule} \rightarrow \textbf{Gittermasten} \rightarrow \textbf{MAST} \ \textbf{Anbauten}.$

Navigator

Das Modul MAST Anbauten kann im Daten-Navigator aufgerufen werden über den Eintrag

```
\mathsf{Zusatzmodule} \to \mathsf{MAST} \ \mathsf{Anbauten}.
```

🕾 RSTAB							
🚊 📲 Gittermast [MAST]							
🚡 🛅 Strukturdaten							
🕀 💼 Belastung							
Ergebnisse							
🛅 Ausdruckprotokolle							
😟 🧰 🛅 Hilfsobjekte							
🖮 🧰 Zusatzmodule							
- 🌝 DUENQ 7 - Querschnittswerte dünnwandiger Profile							
- 🔟 DICKQ 6 - Querschnittswerte dickwandiger Querschnitte							
- 🖅 STAHL - Allgemeine Spannungsanalyse von Stahlstäben							
- 🚾 STAHL EC3 - Stahlbemessung nach Eurocode 3							
🔁 KAPPA - Biegeknicknachweis							
BGDK - Biegedrillknicknachweis							
- 🔍 FE-BGDK - Biegedrillknicknachweis nach Theorie II Ordnung (FEM)							
EL-PL - Tragsicherheitsnachweis nach Verfahren EL-PL							
C-ZU-T - Nachweis von grenz (c/t)							
MAST Struktur - Generierung der Strukturen von Gittermasten							
MAST Anbauten - Anbauten von Gittermasten							
MAST Belastung - Generierung der Belastung ላዕክ Gittermasten							
🔤 🔡 RSKOMBI - Generierung der LF-Gruppen/-Kombinationen							

6. Eingabedaten

Die Eingaben zur Definition der Anbauten erfolgen in Masken.

Nach dem Aufruf des Moduls **MAST Anbauten** wird in einem neuen Fenster links ein Navigator angezeigt, der alle aktuell anwählbaren Masken verwaltet.

Die Ansteuerung der Masken erfolgt entweder durch Anklicken eines bestimmten Eintrags im Navigator von MAST Anbauten oder durch Blättern mit den beiden links dargestellten Schaltflächen. Die Funktionstasten [F2] und [F3] blättern ebenso eine Maske vorwärts oder zurück.

Mit [OK] werden die bereits getätigten Eingaben gesichert und das Modul MAST Anbauten

verlassen, während [Abbrechen] ein Beenden ohne Sicherung zur Folge hat.

OK Abbrechen

6.1 Basisangaben

In Maske 1.1 erhält man eine Übersicht über die aus RSTAB/RFEM eingelesenen Strukturdaten, aufgelistet nach den Mastbauteilen. Wählt man eine Zeile in der Tabelle *Stabzuordnung* aus, so werden die Strukturteile im rechts dargestellten Modell farbig markiert. Um das Modell anzuzeigen, ist die links dargestellte Schaltfläche zu verwenden.

Im unteren Bereich sind die wichtigsten Geometriedaten der Mastkonstruktion aufgelistet.

ingabedaten	1.1 Basisangaben					
Basisangaben Bühnen	Grundrissform	Richtung vom	Norden			×
Aufsatzrohr Antennenträger Antennengruppen	DreieckigViereckig	Bezogen auf g φ: (globale Achse X: 0.00 🔶 (*)			
- Antennen Antennenersatzflächen						- MA
Innenschächte	Stabzuordnung					
- Kabelbahnen	Eckstiel 1	1-13				
Leitern	Eckstiel 2	14-26				
	Eckstiel 3	27-39				— MAX
	Eckstiel 4	40-52				
	Seite F	53-90,205-216				- DXXX
	Seite L	91-128,217-228				
	Seite R	167-204,241-252				
	Seite B	129-166,229-240				
	Honzontale Austachunge	253-277				
	Innere Austachungen	2/0-233				
					to 🖉	
	Mast-Abmessungen					
	Gesamte Höhe H:	25.000 [m]	Breite oben	bx:	0.961 [m]	1 DASCA
				bγ:	0.961 [m]	
			Breite unten	bx:	3.832 [m]	
				by:	3.832 [m]	· · · · · · · · · · · · · · · · · · ·
0 5 5	Exportieren Details			Viewer		

Bild 6.1: Maske 1.1 Basisangaben

Wurde die Maststruktur ohne das Modul **MAST Struktur** erstellt oder nach dem Export aus **MAST Struktur** verändert, so ist die Tabelle *Stabzuordnung* zunächst leer. Man hat dann die Möglichkeit, die Stabnummern manuell in die Zeilen einzutragen oder mit Hilfe der [Pick]-Funktion die entsprechenden Bauteile aus der RSTAB/RFEM-Struktur auszuwählen.

Richtung von Norden

Für die spätere Definition der Belastung und zur Bemessung der Konstruktion ist die Ausrichtung der Antennenanlagen wichtig. Über den Winkel ϕ wird die Ausrichtung des Mastes in Bezug auf Norden definiert. Dieser bezieht sich auf die globale X-Achse in RSTAB.

6.2 Bühnen

Bühnen sind wichtige Bestandteile von Masten. In der Maske 1.2 haben Sie die Möglichkeit, verschiedenste Arten von Bühnenkonstruktionen in die Struktur zu integrieren.

Bild 6.2: Maske 1.2 Bühnen

Im oberen Teil der Maske wird der *Bühnentyp* festgelegt. Dazu hat der Anwender die Möglichkeit, Muster aus einer Datenbank auszuwählen. Zum Öffnen der Datenbank platzieren Sie den Cursor in der gewünschten Zeile der Spalte A und drücken dann [...] oder benutzen die [Bibliothek]-Schaltfläche. Die Höhenlage der Bühne wird durch die Eingabe der Höhen-*Kote z* oder über die *Koordinate Z* festgelegt. Die Definition dieser Variablen ist in der schematischen Darstellung einzusehen.

Da die Bühnenträger nicht immer symmetrisch angeordnet sein müssen, kann die Definition einer *Drehung* der Bühne sinnvoll sein, zum Beispiel um die gerade Führung einer Kabelbahn zu ermöglichen. Hierzu besteht die Möglichkeit, in Spalte B einen Winkel zwischen 0°, 90°, 180° und 270° zu definieren.

Zu der im oberen Teil ausgewählten Bühne werden die Parameter in der unteren Tabelle dargestellt. Über die jeweiligen Abstände wird die Lage der einzelnen Bühnenträger definiert. Zur besseren Übersicht kann man hier über die in Tabelle 6.1 aufgeführten Schaltflächen die Ansicht individuell anpassen. Werden die Parameter rot gekennzeichnet, so ist die Bühne mit den definierten bzw. in der Datenbank hinterlegten Abmessungen nicht in die Mastgeometrie integrierbar. Es ist dann möglich, mit dem Mauszeiger über die Parameterbezeichnung zu fahren und es wird der mögliche Wertebereich des Parameters angezeigt.

....

Schaltfläche	Funktion				
	Anzeige der schematischen Darstellung oder des Modells				
C)	Anzeige des Drahtmodells oder des gerenderten Modells				
Q	Anzeige des aktuellen Objekts oder aller Objekte				
	Nicht selektierte Objekte transparent anzeigen oder nicht anzeigen				
x ₩	Bemaßung anzeigen				
a a	Bemaßung mit Symbolen anzeigen				
TX TY TZ	Ansicht des Modells in Richtung der Achsen X, -Y und Z				
	Anzeige der isometrischen Ansicht				

Tabelle 6.1: Schaltflächen zur Visualisierung der Bühnen

Die Bühnenkonstruktion kann aus einer anderen Stahlgüte gefertigt werden als die Grundkonstruktion des Mastes. Daher ist das Material als weiterer Parameter im unteren Bereich von Maske 1.2 einstellbar. Die Querschnitte der einzelnen Bühnenträger sind für jedes Muster der Datenbank bereits definiert. Mit der Schaltfläche [...] kann eine andere Querschnittsgröße ausgewählt oder über die Querschnittsbibliothek ein neues Profil definiert werden. Die Benutzung der Bibliothek ist im Kapitel 2.2 auf Seite 10 ausführlich beschrieben.

6.3 Bühnen selbst erstellen

Entsprechen die Muster der Datenbank nicht der benötigten Bühnenkonstruktion, so kann der Anwender auch eigene Muster erstellen. Hierzu erzeugt er in einer leeren RSTAB- bzw. RFEM-Position die Bühnenstruktur und legt diese als Block ab. Da viele Abmessungen der Bühnen parametrisiert sind, empfiehlt sich hier die Verwendung einer Standardbühne als Vorlage zur Generierung des individuellen Bauteils. Damit dieses richtig vom Modul MAST Anbauten erkannt wird, gibt es einige Regeln, die bei der Erstellung und Benennung der Muster berücksichtigt werden müssen.

Schema für äußere Bühnen

Bild 6.3: Schema für äußere Bühnen

Schema für innere Bühnen

Bild 6.4: Schema für innere Bühnen

Werden die folgenden Festlegungen vom Anwender berücksichtigt, so können die verschiedensten benutzerdefinierten Bühnen in MAST Anbauten verwendet werden.

- Ebene Bühnen werden als 2D Strukturen erstellt.
- Bühnen mit L-Profilen sind als 3D (XY) Struktur anzulegen.
- Die Knoten der Bühnenecken sind mit 1,2,3,4 zu nummerieren; Knoten Nr. 1 ist dabei im ersten Quadranten (positive X und Y Koordinaten), die weiteren Eckknoten folgen im Uhrzeigersinn.
- Der Parameter "a" bezieht sich auf den Abstand der Knoten 1 und 2 (3 und 4); Parameter "b" bezieht sich auf den Abstand zwischen Knoten 1 und 4 (2 und 3).
- Die zwölf Knoten mit der höchsten Nummerierung (im Falle von drei Knoten pro Bühnenecke) stehen für die Anbindung von Antennenträgern zu Verfügung.
- Knoten in den Außenecken von äußeren Bühnen sind mit 5,6,7,8 zu nummerieren; Knoten Nr. 5 ist dabei im ersten Quadranten (positive X und Y Koordinaten), die weiteren Eckknoten folgen im Uhrzeigersinn.
- Querschnitt Nr. 1 wird immer den äußeren Stäben zugewiesen. Wenn ein weiterer Stab der Bühne den gleichen Querschnitt haben soll, so muss hier ein neuer Querschnitt definiert werden.
- Die neu definierten Bühnen sind als Blöcke abzuspeichern und nach Tabelle 6.2 zu benennen.

Block Bezeichnung	Mastbauart	Bühne	Bühnenform
PRR			rechteckig
PRO	viereckig	äußoro	achteckig
PRT		aubere	dreieckig
PRC			rund
PRI		innere	innere
PRA			innere mit Auflager für Aufsatzrohr
PTR			rechteckig
PTP	dreieckig	äußoro	mehreckig
PTT		aubere	dreieckig
PTC			rund
PTI		innere	innere

Tabelle 6.2: Bühnen-Bezeichnungen

6.4 Aufsatzrohr

Aufsatzrohre dienen als Haltekonstruktionen von Antennen und Blitzabfanganlagen. In Maske 1.3 kann man in der oberen Tabelle die Geometrie und Lage des Aufsatzrohres bestimmen. Das rechts dargestellte Schema erklärt dabei die verschiedenen Parameter.

ingabedaten	1.3 Aufsatzrohr							
Basisangaben Bühnen	Anwenden						3	
Aufsatzrohr	Abmess	ungen				В		
- Antennenträger	Ober		ho		8.000	m		
- Antennengruppen	Unte	hu		3.000	m	L R		
- Antennen	Gesa	Gesamthöhe			11.000	m	● ┻━ -�-	
- Antennenersatzflächen	🗆 Versatz							
 Innenschächte 	Versa	JX ex		0.000	m			
- Kabelbahnen	Versatz in Richtung Y		jΥ eγ		0.000	m	2	
Leitern	🗆 Abschin	mfaktor						
	Unte	fu	fu 0.800			•		
	Material							
	Beze		Baustahl S 235					
	Querschr	itte						
		А			В	*		
	Bereich							
	INF.	h;[m]		Que	rschnitt			
	1	RO 114.3x3.6	i.3x3.6					
	2	5.500	RO 133x3.6					
	3							
	4							
	5							
	6						7/11/1. 7/1/17.	
	₹							
	۲							

Bild 6.5: Maske 1.3 Aufsatzrohr

Der *Abschirmfaktor* ist standardmäßig auf 1,0 gesetzt. Nach DIN 4131 Anhang A Kapitel A1.3.2.2 kann für Konstruktionsteile, welche sich innerhalb der Umrissfläche des Mastes befinden, die Windlast um bis zu 20% reduziert werden.

In der unteren Tabelle wird der *Querschnitt* des Aufsatzrohres festgelegt. Weiterhin ist es hier möglich, das Bauteil durch die Definition von Teilhöhen h_i in mehrere Bereiche und somit verschiedene Querschnitte zu unterteilen.

6.5 Antennenträger

In Maske 1.4 werden die Antennenträger definiert. Da diese Bauteile je nach zu befestigender Antenne sehr unterschiedliche Formen haben können, steht in **MAST Anbauteile** eine umfassende Datenbank mit Mustern zur Verfügung.

Bild 6.6: Maske 1.4 Antennenträger

In Spalte B der Tabelle legt man fest, an welchem Mastbauteil der Antennenträger befestigt werden soll. Als tragende Unterkonstruktion kann dort das Aufsatzrohr, die Eckstiele oder eine Bühne ausgewählt werden. Wird eine Bühne als Unterkonstruktion gewählt, so muss in Spalte C der entsprechende Knoten angegeben werden. Über das Pulldownmenü werden die Knoten mit Zuordnung zu den entsprechenden Mastseiten zur Auswahl gestellt.

Bühne 3	31	-	1.223	
	Nr.	Lage	Anordnung	*
	22	Seite F	2	
	23	Seite F	3	
	24	Seite L	1	
	25	Seite L	2	
	26	Seite L	3	Ξ.
	27	Seite B	1	
	28	Seite B	2	ŀ
	29	Seite B	3	
	30	Seite R	1	
	31	Seite R	2	Ŧ

6.6 Antennengruppen

Zu einer Mobilfunkbetreiber orientierten Auswertung der Beanspruchungen ist eine dahingehende Gliederung der Antennenbelegung sinnvoll. In Maske 1.5 wird dazu die Definition von Antennengruppen vorgenommen.

Bild 6.7: Maske 1.5 Antennengruppen

Die vier großen Mobilfunkbetreiber sind hier bereits angegeben und farbig hinterlegt.

Man hat die Möglichkeit, eigene Anbieter zu definieren; die Farben sind über die Farbtabelle individuell einstellbar.

6.7 Antennen

Durch ihre Form und Größe bieten die Antennen mitunter sehr große Angriffsflächen für die auftretende Windbelastung. Daher ist die Definition der Lage und der Ausrichtung dieser Bauteile für die Bemessung von Bedeutung.

Bild 6.8: Maske 1.6 Antennen

In Spalte A der Maske 1.6 wird der Antennentyp festgelegt. Dazu hat der Anwender die Möglichkeit, Muster aus einer umfassenden Datenbank auszuwählen. Zum Öffnen der Datenbank platzieren Sie den Cursor in der gewünschten Zeile der Spalte A und drücken dann [...] oder nutzen die [Bibliothek]-Schaltfläche.

Nachdem die Antennengruppe in Spalte B festgelegt wurde, muss noch die genaue Position am Mast definiert werden. Hierbei ist es sinnvoll, die zu bearbeitende Antenne im Grafikfenster der Maske groß darzustellen.

Die *Lage* der Antenne wird über die in Maske 1.4 festgelegten Antennenträger definiert. Je nach Typ des Antennenträgers steht in Spalte D eine verschiedene Anzahl von Stäben zur Auswahl, an denen die Antenne befestigt werden kann. Über das *Versatz*-Maß kann noch die Lage der Empfangseinheit innerhalb des Stabes verändert werden.

Eine wichtige Definition ist die Angabe der Antennenausrichtung, da diese für die später festzulegende Belastung von Bedeutung ist. Über den Winkel α wird die *Ausrichtung* der Antenne in Bezug auf die Himmelsrichtung Norden definiert.

Im unteren Teil der Maske 1.6 erhält man Detailinformationen zu den Parametern der Antenne und ihrer Geometriedaten.

6.8 Antennenersatzflächen

Ist die Bauart der Antenne zum Zeitpunkt der Bemessung noch nicht eindeutig festgelegt oder in der Datenbank nicht auswählbar, so kann man zur Berücksichtigung dieses Konstruktionsteils in Maske 1.7 eine Ersatzfläche definieren. Diese wird dann zur Generierung der richtigen Wind- beziehungsweise Eisbelastung im Modul **MAST Belastung** verwendet.

Bild 6.9: Maske 1.7 Antennenersatzflächen

Es werden in der Tabelle die Abmessungen und die Höhenlage der Ersatzfläche definiert. Die Bestimmung einer bestimmten Mastseite ist nicht notwendig. Die maßgebende Mastseite wird im Modul **MAST Belastung** bei der Generierung der Last ermittelt.

Zur Berücksichtigung des Antenneneigengewichts kann in den Parametern das *Gewicht G* als Eigengewichtskraft definiert werden. Weiterhin ist es möglich, einen *Versatz* e anzugeben. Bei der Generierung der Windbelastung im Modul **MAST Belastung** wird dieses Maß dann berücksichtigt.

6.9 Innenschächte

Innenschächte dienen zur Aufnahme von Leitern und Kabelbahnen. In Maske 1.8 kann der Anwender Größe, Lage und Anzahl der Innenschächte bestimmen.

Bild 6.10: Maske 1.8 Innenschächte

Die Innenschächte können im Inneren der Maststruktur oder an den Seiten angebracht werden.

Über die Höhen-*Kote* z_A und z_B werden Beginn und Ende des jeweiligen Schachts bestimmt. Die *Drehung* α in Spalte F und der *Abschirmfaktor* K_{sh} im Abschnitt *Parameter* unterhalb sind notwendige Angaben zur späteren Bestimmung der richtigen Windbelastung.

Mithilfe der Spalten G bis J kann ein Versatz der Start- und Endposition des Innenschachts definiert werden. Ein Höhenversatz der Ausfachung des Innenschachts kann mithilfe der Einstellung *Versatz der Ausfachung* im Abschnitt *Parameter* erstellt werden.

Standardmäßig werden die Seiten der Innenschächte identisch ausgeführt. Sollte eine individuelle Ausführung je Seite notwendig sein, so deaktiviert man das Kontrollfeld *Identische Seiten* im Abschnitt *Parameter*. Dann können die Seiten individuell ausgeführt werden.

Zur Querschnittsauswahl steht die bekannte Bibliothek zur Verfügung. Um einen andere Querschnitt auszuwählen, platziert man den Cursor in der Zelle des Profils, das man ändern möchte, und drückt dann [...].

6.10 Kabelbahnen

Ähnlich der Eingabe von Innenschächten dient die Angabe von Kabelbahnen zur Berücksichtigung dieser bei der Windbelastung des Eigen- und Eisgewichts.

	1.9 Kabe	elbahnen									
Basisangaben		A	В	C	D		E	F	G	H	
Bühnen	Bahn			Kote	e [m]	I	Breite	Tiefe	Anzahl	Drehung	
Aufsatzrohr	Nr.	Form	Lage	Anfang z _A	Ende 2	в	b [m]	d [m]	von Kabeln	α[°]	Kommen
Antennentrager	1	Rechteckig	Mitte	7.500	31	.000	0.100	0.250		0.00	Verteilung
Antennengruppen	2	Rund	Eckstiel	1 0.000	31	.000	0.100				Hauptleitu
Antennen Automos sustaliästen	3										
Antennenersatzriachen											
nnenschachte Zahalhalanan	•		_								
eitern											
Leitein											
	Daramat	as Kabalbaba	N _e 1						2	4	
	Paramet	er - Kabelbann	INF. 1						В	-7 ⁴	
	El Paramo	eter	× -		0.000	_	_	-± -		9	
	Vers	atz in Richtung	X e	1	0.000 r	n •	_	°T @	Ξι	R	
	Vers	satz in Richtung	1 6	ſ	0.000	N /m	_				
	Gew	noni.	u K	0 1	1,000	.19/10	_			- 1 1	
	ADS	dungon	IX	20	1.000		_		b		
		abl der Anschlüs			2		_			5	
		oblues an	30		Ctab		_		'	1.	
	- 400	childes dri			315		_				
	El Ans.	tab Mr									
	E Ans S	tab Nr. chlues an			Stab						
	El Ans S El Ans	itab Nr. chluss an tab Nr			Stab 324		_				
	El Ans S El Ans S	itab Nr. chluss an tab Nr.			Stab 324						
	E Ans	itab Nr. chluss an tab Nr.			Stab 324		_	78			
	E Ans S Ans	itab Nr. chluss an tab Nr.			Stab 324			ZB			
	S	itab Nr. chluss an tab Nr.			Stab 324			5 78			
	S	itab Nr. chluss an tab Nr.			Stab 324			ZB			
	S S S S	itab Nr. chluss an tab Nr.			Stab 324			ZB			

Bild 6.11: Maske 1.9 Kabelbahnen

Es können rechteckige und runde Kabelbahnen definiert werden. Die Eingabe erfolgt ähnlich wie bei den Innenschächten. Für die richtige Berücksichtigung der Verschattung bei der Windlastgenerierung können auch einzelne Kabel in einer Reihe positioniert werden. Wählt man diese Form in Spalte A aus, so kann in Spalte G die Anzahl der Kabel festgelegt werden.

Über die Höhen-Kote z_A und z_B werden Beginn und Ende der jeweiligen Kabelbahn festgelegt. Die Drehung α , der Abschirmfaktor K_{sh} und der Versatz werden in den Parametern jeder einzelnen Kabelbahn definiert. Das Eigengewicht gibt man als Linienlast in [kN/m] an.

Über die *Verbindungen* werden die Halterungen der Kabelbahnen an der Mastkonstruktion angegeben. Dies ist für den Lasteintrag aus Eigengewicht, Wind und Eis auf die tragende Konstruktion von Bedeutung.

6.11 Leitern

In Maske 1.10 werden die Leitern zur Besteigung des Mastes angegeben.

ingabedaten	1.10 Leit	ern						
Basisangaben		A	В	C	D	E	F	G
Bühnen	Leiter			Kote	e [m]	Breite	Drehung	
Autsatzrohr	Nr.	Form	Lage	Anfang z _A	Ende z B	b [m]	α[°]	Kommentar
Antennentrager	1	Standard	Mitte	3.000	32.000	0.400	0.00	
Antennengruppen	2							
Antennen	3							
Antennenersatzflachen	4							
Innenschachte	5							
Kabelbahnen								
Leitern								
	Paramet	er - Leiter Nr. 1					d	
	🖂 Param	eter					1	1
	Vers	atz in Richtung)	< ex		0.000 m			
	Vers	atz in Richtung	r ey		0.000 m		a	- C
	Gew	vicht	G		0.080 kN/n	n		
	Abs	chimfaktor	Ks	1	1.000		b	
	E Leiter	Geometrie						
	Vers	atz oberer Spros	se a		0.250 m			
	Abst	and Sprossen	b		0.300 m			
	Spro	sse Durchmesse	r C		0.040 m			0
	Spro	sse Gesamtläng	e d		0.400 m			
	Holn	n-Durchmesser	e		0.060 m			
	E Verbin	dungen						
	Anz	ahl der Anschlüss	se		2			
	E Ans	chluss an			Stab		4	
	S	tab Nr.			338		e 🗘	=0
	E Ans	chluss an			Stab		T	
	S	tab Nr.			476	(Approx)		
						N	Q .	

Bild 6.12: Maske 1.10 Leitern

Es stehen fünf Leitertypen zur Auswahl. Die Standardleiter ist in Bild 6.12 zu sehen. Die weiteren Typen sind im Folgenden dargestellt.

Bild 6.13: Leitertypen

Über die Höhen-Kote z_A und z_B werden Beginn und Ende der jeweiligen Leiter bestimmt. Die Drehung α , der Abschirmfaktor K_{sh} und der Versatz wird in den Parametern jeder einzelnen Leiter definiert. Das Eigengewicht ist für die Standardparameter bereits angegeben. Ändert man die Leitergeometrie, so muss auch das Gewicht entsprechend geändert werden.

Analog der Kabelbahnen muss auch bei den Leitern angegeben werden, wie oft und an welchen Stellen der Mastkonstruktion das Anbauteil befestigt ist. Zur richtigen Ermittlung der Mastbelastung ist dies eine wichtige Definition.

6.12 Export

Sind alle Anbauteile definiert, so können diese nach RSTAB/RFEM exportiert werden.

Statisch wirksame Bauteile wie Antennenträger, Aufsatzrohre und Innenschächte werden beim Export als Stäbe angelegt. Zur Visualisierung der anderen Anbauteile wird im Hauptprogramm ein MAST Anbauten-Fall angelegt. Dieser kann wie ein normaler Lastfall eingeblendet werden.

7. Allgemeine Funktionen

Über die Menüleiste am oberen Rand der Maske sind verschiedene allgemeine Funktionen möglich.

7.1 MAST-Fall löschen

Es besteht die Möglichkeit einen MAST-Fall zu löschen über MAST-Menü

Datei → Fall löschen.

Nach dem Bestätigen der Auswahl wird der Fall gelöscht und das Modul geschlossen. Bereits exportierte Daten bleiben in RSTAB/RFEM erhalten.

7.2 Einheiten und Dezimalstellen

Die Einheiten und Nachkommastellen werden für RSTAB/RFEM sowie für sämtliche Zusatzmodule zentral verwaltet. In **MAST Anbauten** ist der Dialog zum Einstellen der Einheiten zugänglich über das Menü

Einstellungen \rightarrow Einheiten und Dezimalstellen.

Es wird der aus RSTAB/RFEM bekannte Dialog aufgerufen. Das MAST-Modul ist voreingestellt.

Einheiten und Dezimalste	llen -	Metrisch *					×
Programm / Modul 	•	RF-MAST Anbauten Geometriedaten Längen: Winkel:	Einheit m v	DezStellen	Belastungsdaten Kräfte: Längen in Momenten:	Einheit N -	DezStellen
	Ш				Windgeschwind.:	m/s V	1
RAHMECK DSTV STABDÜBEL HOHLPROF RSKNICK DEFORM RSBEWEG Stäbe RSIMP MAST Struktur MAST Anbauten MAST Belastung	-						
0 🛛 🖻 😭	œ					ОК	Abbrechen

Bild 7.1: Dialog Einheiten und Dezimalstellen

Die Einstellungen können als Benutzerprofil gespeichert und in anderen Positionen wieder verwendet werden.

8. MAST Knicklängen

8.1 Einführung

Dieses Zusatzmodul erzeugt die Knicklängen für die einzelnen Stäbe. Dabei können die Längen von quadratischen, rechteckigen oder dreieckigen Mastgrundrissen generiert werden. Es ist ebenfalls möglich, einen Mast aus dem Modulen **Mast Struktur** und **Mast Anbauten** in der Eingabe zu berücksichtigen. Das Modul **Mast Knicklängen** arbeitet jedoch in jedem Falle unabhängig, d. h. jeder Fachwerkmast aus RSTAB/RFEM kann zur Ermittlung der Knicklängen benutzt werden. Nach der Generierung können die generierten Knicklängen exportiert werden, um sie für die Nachweise im Modul **Mast Bemessung** zu berücksichtigen.

Die Generierung der Knicklängen basiert ausschließlich auf der Geometrie des Mastes. Sie ist damit unabhängig von der Belastung. Durch die Optionen im Dialog *Detaileinstellungen* kann die Berechnung beeinflusst werden. Die Knicklängen können nach der Berechnung manuell editiert werden. Das Modul stellt eine effektive und leistungsfähige Lösung zur Ermittlung der Knicklängen dar, die in den nächsten Abschnitten beschrieben wird.

8.2 Starten des Moduls

Es bestehen in RSTAB/RFEM zwei Möglichkeiten, das Zusatzmodul MAST Knicklängen zu starten.

Menü

Der Programmaufruf kann erfolgen über das Pulldownmenü

Zusatzmodule \rightarrow Gittermasten \rightarrow MAST Knicklängen.

Bild 8.1: Hauptmenü: Zusatzmodule \rightarrow Gittermasten \rightarrow MAST Knicklängen

Navigator

Das Modul MAST Knicklängen kann im *Daten*-Navigator aufgerufen werden über den Eintrag

 $\textbf{Zusatzmodule} \rightarrow \textbf{MAST Knicklängen}.$

Projekt-Navigator	×
RSTAB	
🚊 📲 Demo-5* [STAHL BS]	
🗄 🖞 🛅 Strukturdaten	
🛓 🗉 Belastung	
Ergebnisse	
🚋 🛅 Ausdruckprotokolle	
🚋 💼 Hilfsobjekte	
🚊 📹 Zusatzmodule	
15 DUENQ 7 - Querschnittswerte dünnwandiger Profile	
😰 STAHL - Allgemeine Spannungsanalyse von Stahlstäben	
Image: STAHL EC3 - Bemessung nach Eurocode 3	
STAHL AISC - Bemessung nach AISC (LRFD oder ASD)	
MAST Struktur - Generierung der Strukturen von Gittermaster	1
- MAST Belastung - Generierung der Belastung von Gittermaste	an
MAST Knicklängen - Generierung von Knicklängen	
•	Þ.
The Daten Zeigen 4	⊳

Bild 8.2: Daten-Navigator: Zusatzmodule \rightarrow MAST Knicklängen

9. Eingabedaten

Die zur Ermittlung der Knicklängen erforderlichen Daten sind in Maske 1.1 *Basisangaben* einzugeben.

Nach dem Aufruf von **MAST Knicklängen** erscheint im linken Teil des Fensters ein Navigator, der alle aktuell anwählbaren Masken verwaltet.

0K

Abbrechen

Die Ansteuerung der Masken erfolgt entweder durch Anklicken eines bestimmten Eintrags im Navigator oder durch Blättern mit den beiden links dargestellten Schaltflächen. Die Funktionstasten [F2] und [F3] blättern ebenso eine Maske vorwärts oder zurück.

Mit [OK] werden die bereits getätigten Eingaben gesichert und das Modul MAST Knicklängen verlassen, während [Abbrechen] ein Beenden ohne Sicherung zur Folge hat.

9.1 Basisangaben

Maske 1.1 gibt einen generellen Überblick über die Struktur. In den Abschnitten *Masttyp* und *Anzahl von* werden die Basisparameter des Mastes gesetzt. In Abhängigkeit von diesen Vorgaben erscheinen im Abschnitt *Stabzuordnung* die entsprechenden Zeilen.

10

Mit der Schaltfläche [Pick] können Stäbe grafisch aus RSTAB/RFEM für die Analyse ausgewählt werden. Wurde ein Mast mit den Modulen MAST Struktur und/oder MAST Anbauten erstellt, so erfolgt die Zuordnung der Stäbe automatisch. Beim Klicken in eine Zeile des Abschnitts *Stabzuordnung* werden alle Stäbe dieser Zeile rechts in der Strukturgrafik hervorgehoben – wenn die Option [Rendering anzeigen] aktiviert ist.

gabedaten	1.1 Basisangaben	
Basisangaben	Masttyp	, Anzahi von
	Desirabia	Dilana 5 Innanashijakta 1
	Ordeleckig	
	Rechteckig	Antennenträger: 3
	Stabzuordnung	
	Eckstiel 1	1-13 317 367 425 479 519
	Eckstiel 2	14-26.318.368.426.480.520
	Eckstiel 3	27-39.319.369.427.481.521
	Eckstiel 4	40-52,320,370,428,482,522
	Seite F	53-88,197-208
	Seite L	89-124,209-220
	Seite R	161-196,233-244,560
	Seite B	125-160,221-232
	Horizontale Ausfachunge	245-269 5 5
	Innere Ausfachungen	270-285
	Aufsatzrohr	538-543,571
	Bühne Nr. 1	286-312,561-565
		🔊 💌 Knicklängen
	Mast-Abmessungen	ton one magnetic
	Gesamte Höhe H :	32.000 [m] Breite oben bx: 2.500 [m]
		by: 2.500 [m]
		Breite unten hv: 5.990 [m]
		bγ: 5.890 [m]

9.2 Details

<u>D</u>etails...

Die Schaltfläche [Details] ruft einen Dialog mit zahlreichen Einstellungen auf, die für die Ermittlung der Knicklängen wichtig sind.

Detaileinstellungen	
Knoteneinspannungen	Lokales Koordinatensystem der Stäbe
Kreuzmittelpunkte eingespannt quer zur Ausfachungsebene für:	Orientierungstoleranz: 5.00 💌 [°]
Kreuzende Ausfachung	Einstellungen
Horizontale Ausfachung	Eingabe der Biegedrillknickendaten für nicht
Innere Ausfachungen	Fachwerkstabe nach EC 1993-1-1
Eckstielknoten eingespannt in der Seitenebene durch:	
Horizontale Ausfachungen	
Innere Ausfachungen	
Innere Ausfachungseinspannung	
🔲 Seitenknoten in der und quer zur Seitenebene	
Horizontale Ausfachungsknoten quer zur horizontalen Ausfachungsebene	
	OK Abbrechen

Bild 9.2: Dialog Detaileinstellungen

Knoteneinspannungen

Für die Generierung der effektiven Längen muss definiert werden, welche Knoten in welche Richtung als gehalten von anderen Stäben angesehen bzw. welche Knoten als nicht gehalten betrachtet werden sollen. Der Abschnitt *Knoteneinspannungen* stellt die entsprechenden Optionen zur Verfügung.

Bild 9.3 zeigt die Optionen zur Definition der Einspannungen rechtwinklig zur Ausfachungsebene des Kreuzungsknotens zweier Ausfachungsstäbe. Ist ein Kontrollfeld angehakt, wird der Kreuzungsknoten der jeweiligen Ausfachung als gehalten betrachtet und es wird die effektive Länge L₁ rechtwinklig zur Ausfachungsebene generiert (siehe Bild 9.4). Ist das Kontrollfeld deaktiviert, so wird der jeweilige Knoten als nicht gehalten betrachtet; es wird die effektive Länge L₂ generiert.

- Kreuzmittelpunkte eingespannt quer zur Ausfachungsebene für:
- Kreuzende Ausfachung
- Horizontale Ausfachung
- 🔽 Innere Ausfachungen

Bild 9.3: Kontrollfelder für Knoteneinspannung rechtwinklig zur Ausfachungsebene

Bild 9.4: Generierte Knicklängen je nach Knoteneinspannung

Die in Bild 9.5 gezeigten Optionen definieren, wie die Eckstiele von horizontalen Ausfachungen gehalten werden. Ist das Kontrollfeld *Horizontale Ausfachungen* deaktiviert, werden die Eckstiele nur in diagonale Richtungen durch die Ausfachungen gehalten (siehe Bild 9.6a). Ist das Kontrollfeld angehakt, werden die Eckstiele diagonal und in die Richtungen der Mastseiten gehalten (siehe Bild 9.6b). Analog können die Eckstiele durch *Innere Ausfachungen* gehalten werden.

Eckstielknoten eingespannt in der Seitenebene durch: Horizontale Ausfachungen Innere Ausfachungen

Bild 9.5: Einspannung der Eckstielknoten

Bild 9.6: Einspannung der Eckstielknoten durch horizontale Ausfachung

Sind im Mast innere Ausfachungen vorhanden, so können diese bei der Ermittlung der Knicklängen für die horizontalen Ausfachungen sowie für die Seitenstäbe berücksichtigt werden. Diese Möglichkeiten sind in Bild 9.7 dargestellt.

Innere Ausfachungseinspannung

Seitenknoten in der und quer zur Seitenebene

Horizontale Ausfachungsknoten quer zur horizontalen Ausfachungsebene

Bild 9.7: Innere Ausfachungseinspannung

Lokales Koordinatensystem der Stäbe

Für die Generierung der Knicklängen müssen die Querschnitte der Mastelemente korrekt ausgerichtet sein. Es gelten folgende Regeln zur Orientierung der Stabachsen:

Eckstiele:

Die lokale y- und z- Achse muss parallel zu den Seiten des Mastes liegen (siehe Bild 9.8a). Bei dreieckigen Masten spielt die Orientierung der Eckstiele keine Rolle, da hier die Knicklängen in einem vereinfachten Verfahren ermittelt werden.

- Seitenstäbe: Die lokale y- oder z- Achse muss parallel zur Ebene der Seite liegen (siehe Bild 9.8b).
- Horizontale Ausfachungen: Die lokale y- oder z- Achse muss lotrecht zur Ausfachungsebene liegen.

Bild 9.8: Orientierung der Eckstiel- und Seitenstäbe

Wurde der Mast mit dem Modul **MAST Struktur** erstellt, sind die Stäbe entsprechend dieser Regeln orientiert. Falls der Mast manuell in RSTAB/RFEM modelliert wurde, so muss die Orientierung der einzelnen Stäbe überprüft werden, um die korrekte Generierung der Knicklängen zu gewährleisten. Die Orientierung der einzelnen Stäbe ist ggf. in RSTAB/RFEM anzupassen.

Die exakte Ermittlung der Staborientierung kann jedoch – besonders bei geneigten Stäben – mühsam sein. Das Eingabefeld *Orientierungstoleranz* bietet deshalb eine Möglichkeit, die Staborientierung näherungsweise zu bestimmen. Die Toleranz kann von 0° bis 44,99° fest-gelegt werden. Passt die Orientierung nicht zu den obigen Regeln inklusive Toleranz, so kann die effektive Länge nicht automatisch ermittelt werden.

Einstellungen

Die effektiven Längen der Nicht-Fachwerkstäbe können manuell in Tabelle 2.2 definiert werden. Sollen diese Stäbe später nach EN 1993-1-1 nachgewiesen werden, können die Biegedrillknickdaten eingegeben werden. Um die Eingabefelder in Tabelle 2.2 freizuschalten, ist dieses Kontrollfeld anzuhaken.

10. Generierte Daten

Generieren

Die Ermittlung der Knicklängen wird über die Schaltfläche [Generieren] gestartet. Dabei wird auch eine Überprüfung der Eingabedaten durchgeführt. Da in Maske 1.1 *Stabzuordnungen* Stäbe nur einmal zugewiesen werden können (siehe Bild 9.1), erscheint eine Fehlermeldung, falls ein Stab mehrfach zugewiesen ist.

	MAST Knicklängen
Unzuläs: Mehrfaci	sige Eingabe in Maske 1.1! he Eingabe der Stäbe 2.
	<u>o</u> k

Bild 10.1: Warnung bei Mehrfachzuweisung von Stäben

Die Berechnung kann nicht ausgeführt werden, solange die Eingabedaten der Maske 1.1 im Abschnitt *Stabzuordnung* nicht korrekt sind.

Nach der erfolgreichen Generierung erscheinen die Ergebnismasken des Moduls, die in den folgenden Abschnitten näher beschrieben sind.

10.1 Knicklängen - Fachwerkstäbe

Maske 2.1 *Knicklängen - Fachwerkstäbe* gibt die generierten effektiven Längen aus. Diese Maske zeigt ausschließlich Fachwerkstäbe, also die Stäbe, die das Haupttragwerk des Mastes bilden (Eckstiele, Seiten, horizontale Ausfachungen und innere Ausfachungen). Für jeden Stab sind die Knicklängenbeiwerte k_v, k_y, k_z und die effektiven Längen L_{cr,v}, L_{cr,z} aufgelistet. Die Werte beziehen sich auf die lokalen Koordinatensysteme der Stäbe.

Eingabedaten	2.1 Knicl	dängen - Fa	achwerkstä	ibe					
Basisangaben		A	B	С	D	E	F	G 🔺	
Generierte Daten	Stab	Länge		Knicklär	igenbeiwert	e und Knick	längen		1
Knicklängen - Fachwerkstäbe	Nr.	L [m]	k cr, v	L _{cr,v} [m]	k cr, y	L _{cr.y} [m]	k cr,z	L _{cr,z} [m]	1
Effektive Längen - Nichtfachw		Eckstiel Nr	. 1 - Mastsc	huss Nr.1					
	1	1.000	2.000	2.000	2.000	2.000	2.000	2.000	
	317	1.000	2.000	2.000	2.000	2.000	2.000	2.000	
		Eckstiel Nr	. 1 - Mastsc	huss Nr.2					
	2	1.000	2.000	2.000	2.000	2.000	2.000	2.000	
	367	1.000	2.000	2.000	2.000	2.000	2.000	2.000	
		Eckstiel Nr	1 - Mastsc	huss Nr 3					
	3	1.000	2.000	2.000	2.000	2.000	2.000	2.000	
	425	1.000	2.000	2.000	2.000	2.000	2.000	2.000	
		Eckstiel Nr	1 - Mastsc	huss Nr.4					
	4	1.000	2.000	2.000	2.000	2.000	2.000	2.000	
	479	1.000	2.000	2.000	2.000	2.000	2.000	2.000	
		Eckstiel Nr	1 - Mastsc	huss Nr.5					
	5	1.004	2.000	2.007	2.000	2.007	2.000	2.007	
	519	1.004	2.000	2.007	2.000	2.007	2.000	2.007	
		Eckstiel Nr	1 - Master	huss Nr 6					
	6	2.007	1.000	2.007	1.000	2.007	1.000	2.007	
		Eckstiel Nr	1 - Mastso	huss Nr 7	_				
	•							•	
4 III +	Filter:	Alles		•				۲	

Bild 10.2: Maske 2.1 Knicklängen - Fachwerkstäbe

Die Werte k_v , k_y , k_z und $L_{cr,v}$, $L_{cr,z}$ können in unterschiedlichen Farben angegeben werden:

- Wenn die Werte schwarz dargestellt werden, so wurden die Werte korrekt ermittelt.
- Werden die Werte *rot* dargestellt, konnten die Werte nicht automatisch bestimmt werden. In diesem Fall sind die Längenbeiwerte 1,0. Die effektive Länge entspricht damit der Stablänge.
- Ist eine Zelle gesperrt (grau), so existiert kein Wert. Dieser Fall liegt typischerweise bei den Werten k_v und L_{cr.v} von Stäben mit doppeltsymmetrischen Querschnitten vor.

Die Werte für k_v , k_y , k_z und $L_{cr,v}$, $L_{cr,z}$ können manuell in Maske 2.1 geändert werden, solang die Werte nicht ausgegraut und damit gesperrt sind.

L?

1.944 1.944

.000 0.829

2.000

2.000

Innere Ausfachung - Ausfachung Nr.75

eite F - Ausfachung Nr. 1

0.972

146

Über die links dargestellte Schaltfläche [LKS anzeigen] lassen sich die lokalen Koordinatensysteme der Stäbe in der Grafik einblenden.

10.2 Effektive Längen - Nichtfachwerkstäbe

Maske 2.2 *Effektive Längen - Nichtfachwerkstäbe* gibt die Knicklängen von Mast-Anbauteilen wie Plattformen, Innenschächte, Leitern o. ä. aus. Die Werte in dieser Tabelle wurden <u>nicht</u> vom Modul **MAST Knicklängen** ermittelt, da dieses nur die Knicklängen für Fachwerkstäbe berechnet. Die Knicklängenbeiwerte der Nichtfachwerkstäbe sind zu 1,0 gesetzt. Damit entsprechen die Knicklängen den Stablängen.

In der oberen Tabelle sind die Knicklängenbeiwerte und die effektiven Längen der Stäbe um ihre Hauptachsen aufgelistet. In den Spalten F bis H können die Biegedrillknickdaten definiert werden, sofern die entsprechende Option im Dialog *Details* aktiviert wurde (siehe Bild 9.2). In der unteren Tabelle werden die *Details* des oben selektierten Stabes angezeigt.

Bild 10.3: Maske 2.2 Effektive Längen - Nichtfachwerkstäbe

10.3 Export der Ergebnisse

Exportieren

Die Daten der Masken 2.1 und 2.2 lassen sich über die entsprechende Schaltfläche [Exportieren] und dann im Modul **MAST Bemessung** für die weiteren Nachweise nutzen.

11. Allgemeine Funktionen

Über die Menüleiste am oberen Rand der Maske sind verschiedene allgemeine Funktionen zugänglich.

11.1 MAST-Fall löschen

Es besteht die Möglichkeit einen MAST-Fall zu löschen über MAST-Menü

Datei → Fall löschen.

Nach dem Bestätigen der Auswahl wird der Fall gelöscht und das Modul geschlossen. Bereits exportierte Daten bleiben in RSTAB/RFEM erhalten.

11.2 Einheiten und Dezimalstellen

Die Einheiten und Nachkommastellen werden für RSTAB/RFEM sowie für sämtliche Zusatzmodule zentral verwaltet. Im Modul **MAST Struktur** ist der Dialog zum Einstellen der Einheiten zugänglich über das Menü

Einstellungen \rightarrow Einheiten und Dezimalstellen.

Es wird der aus RSTAB/RFEM bekannte Dialog aufgerufen. Das MAST-Modul ist voreingestellt.

Einheiten und Dezimalstel	en - I	Metrisch *				×
Programm / Modul		MAST Knicklängen]			
- EL-PL						
C-ZU-T		Alles				
FE-BEUL			Einheit	DezStellen		
- ASD		Längen:	m 🔻	3 🚔		
KRANBAHN						
- BETON		Winkel:	• •	2 🤤		
- BETON Stützen						
HOLZ Pro						
HOLZ						
···· VERBUND-TR						
DYNAM						
STIRNPL						
VERBIND						
···· RAHMECK Pro						
RAHMECK						
DSTV	=					
STABDUBEL	-					
HOHLPROF						
RSKNICK						
DEFORM						
RSBEWEG Stabe						
RSIMP						
MAST Struktur						
MAST Anbauten						
MAST Keisklängen						
MAST Rnicklangen	-					
I I I I Demessung		L				
(2)					F	OK Abbrechen

Bild 11.1: Dialog Einheiten und Dezimalstellen

Die Einstellungen können als Benutzerprofil gespeichert und in anderen Positionen wieder verwendet werden.

12. MAST Belastung

12.1 Einleitung

Mit dem Zusatzmodul **MAST Belastung** können die zur Bemessung notwendigen Einwirkungen sehr einfach generiert werden. Dabei berücksichtigt das Modul die Anforderungen nach DIN 1055 für Eigengewicht, Windlasten und Eislasten sowie Verkehrslasten gemäß DIN V 4131.

Der Anwender hat aber auch die Möglichkeit, individuelle Belastungssituationen zu generieren. Auf den folgenden Seiten wird detailliert beschrieben, wie mit dem Modul MAST Belastung eine komplexe Einwirkungsdefinition in kurzer Zeit realisiert werden kann.

12.2 Aufruf des Moduls

Es bestehen in RSTAB/RFEM zwei Möglichkeiten, das Zusatzmodul **MAST Belastung** zu starten.

Menü

Der Programmaufruf kann erfolgen über das Pulldownmenü

```
\textbf{Zusatzmodule} \rightarrow \textbf{Gittermasten} \rightarrow \textbf{MAST Belastung}.
```

Zus	atzmodule <u>F</u> enster <u>H</u> ilfe		
40	<u>G</u> ehe zum aktuellen Modul	\$	🔩 🥵 🖳 🥵 🔞 🛠 🕼 🐨 🗶 🕼 🗇 🌮 🛯
	Querschnittswerte	pz	学 玉 畠 圓
1	<u>S</u> tahlbau		
	Stahl <u>b</u> etonbau		
	<u>H</u> olzbau		
	Ve <u>r</u> bundbau		
	<u>A</u> luminiumbau		
	<u>D</u> ynamik		
	Verbindungen		
	<u>F</u> undamente	•	
	S <u>t</u> abilität		
	Gittermasten	A	MAST Struktur Generierung der Strukturen von Gittermasten
	Sonstige	A	MAST Anbaut <u>e</u> n Anbauten von Gittermasten
		A	A MAST Belastung Generierung der Belastung von Gittermasten
		A	MAST Bemessung 😽 Bemessung von Mobilfunk-Gittermasten
		A'	MAST Knicklängen Generierung von Knicklängen

Bild 12.1: Menü: Zusatzmodule \rightarrow Gittermasten \rightarrow MAST Belastung

Navigator

Das Modul MAST Belastung kann im Daten-Navigator aufgerufen werden über den Eintrag

```
\textbf{Zusatzmodule} \rightarrow \textbf{MAST Belastung}.
```

Projekt-Navigator		3
A RSTAB		
📴 📲 Gittermast [MAST]		
🚋 🚞 Strukturdaten		
🖶 🖻 🛅 Belastung		
🛅 Ergebnisse		
🛅 Ausdruckprotokolle		
🗄 💼 Hilfsobjekte		
😑 📺 Zusatzmodule		
📧 DUENQ 7 - Querschnittswerte dünnwandiger Profile		
📨 🗾 STAHL - Allgemeine Spannungsanalyse von Stahlstäben		
🛛 📅 STAHL EC3 - Stahlbemessung nach Eurocode 3		
😳 🔁 KAPPA - Biegeknicknachweis		
🔠 BGDK - Biegedrillknicknachweis		
🖳 FE-BGDK - Biegedrillknicknachweis nach Theorie II Ordnung (FEM)		
🔤 🖬 EL-PL - Tragsicherheitsnachweis nach Verfahren EL-PL		
- 🐷 C-ZU-T - Nachweis von grenz (c/t)		
🔣 MAST Struktur - Generierung der Strukturen von Gittermasten		
MAST Anbauten - Anbauten von Gittermasten		
MAST Belastung - Generierung der Belastung von Gittermasten		
hê		
		_
🞬 Daten 🛛 🖳 Zeigen	< ↓	Þ

Bild 12.2: Daten-Navigator: Zusatzmodule \rightarrow MAST Belastung

13. Eingabedaten

Die Eingabe zur Definition der Lasten erfolgt in Masken.

Nach dem Aufruf von **MAST Belastung** wird in einem neuen Fenster links ein Navigator angezeigt, der alle aktuell anwählbaren Masken verwaltet.

0K

Abbrechen

Die Ansteuerung der Masken erfolgt entweder durch Anklicken eines bestimmten Eintrags im Navigator von MAST Belastung oder durch Blättern mit den beiden links dargestellten Schaltflächen. Die Funktionstasten [F2] und [F3] blättern ebenso eine Maske vorwärts oder zurück.

Mit [OK] werden die bereits getätigten Eingaben gesichert und das Modul MAST Belastung verlassen, während [Abbrechen] ein Beenden ohne Sicherung zur Folge hat.

13.1 Basisangaben

In Maske 1.1 werden grundlegende Informationen über die Maststruktur und die vorhandenen Anbauteile definiert.

Basisangaben Eigengewicht Windlast - Teil 1 Windlast - Teil 2	Masttyp					
Eigengewicht Windlast - Teil 1 Windlast - Teil 2	Masttyp					
Windlast - Teil 1 Windlast - Teil 2		Anzahl von				
Windlast - Teil 2	Drejeckia	Bühne:	5 🌩	Innenschächte:	1 🜩	
 Windlast - Ermittlung des Böen Absohirmung 	Rechteckig	Antennenträ	ger: 3 🚔			j j
Abschlinnung Fislasten - Vereisungsklasse Gi	Stabzuordnung					
– Eislasten - Vereisungsklasse B	Eckstiel 1	1-13.317.367.42	25.479.519			
- Verkehrslasten	Eckstiel 2	14-26,318,368.4	126,480,520			2
	Eckstiel 3	27-39,319,369,4	27,481,521			26
	Eckstiel 4	40-52,320,370,4	28,482,522			
	Seite F	53-88,197-208			=	7
	Seite L	89-124,209-220				
	Seite R	161-196,233-24	4,560			
	Seite B	125-160,221-23	2			
	Horizontale Ausfachunge	245-269				
	Innere Ausfachungen	270-285				
	Aufsatzrohr	538-543,571				N R A
	Bühne Nr. 1	286-312,561-56	5		-	
					🍾 💿	
	Mast-Abmessungen					
	Gesamte Höhe H :	32.000 [m]	Breite oben	bx: 2.50	0 [m]	
				b ү : 2.50	0 (m)	
			Breite unten	bx: 5.89	0 [m]	· · · ·
				by: 5.89	0 [m]	
					e fud	😰 🗊 🔭 🗾 🕻

Bild 13.1: Maske 1.1 Basisangaben

Wird in diesem Modul eine aus MAST Struktur exportierte Mastkonstruktion erkannt, so enthält die Tabelle *Stabzuordnung* bereits alle erkannten Maststäbe. Die in MAST Anbauten definierten Bühnen, Antennenträger und Innenschächte werden im oberen Teil der Maske mit ihrer Anzahl angegeben.

Wurden im Vorfeld keine Daten aus den Modulen MAST Struktur oder MAST Anbauten nach RSTAB/RFEM exportiert, so können die Daten auch manuell in Maske 1.1 eingegeben werden. Wird das Rendering über die links dargestellte Schaltfläche aktiviert, so kann man durch Auswahl der einzelnen Tabellenzeilen die Zuordnung der Stäbe zu den benannten Mastbauteilen in der Grafik kontrollieren und gegebenenfalls anpassen.

Im unteren Teil der Maske erhält man Informationen über die Geometriedaten des Mastes.

13.2 Eigengewicht

Die Tabelle in Maske 1.2 zeigt das Eigengewicht der einzelnen Bauteilgruppen an. Die Ermittlung erfolgt automatisch auf Basis der einzelnen Querschnittsflächen und dem zugeordneten Material.

ngabedaten	1.2 Eigengewicht				
Basisangaben		Faktor	Masse		
Eigengewicht	Objekt	Ð	[kg]	Kommentar	
Windlast - Teil 1	Eckstiele	1.000	1788.3		
Windlast - Teil 2	Mastseiten	1.000	2699.8		
Windlast - Ermittlung des Böen	Horizontale Ausfachunge	1.000	421.2		
Abschirmung	Innere Ausfachungen	1.000	834.0		
Eislasten - Vereisungsklasse G	Aufsatzrohr	1.000	117.2		
Eislasten - Vereisungsklasse R	Bühne Nr. 1	1.000	348.8		
- Verkehrslasten	Bühne Nr. 2	1.000	485.0		
	Bühne Nr. 3	1.000	496.8		
	Bühne Nr. 4	1.000	485.0		
	Bühne Nr. 5	1.000	307.6		
	Antennenträger	1.000	45.6		
	Innenschächte	1.000	685.6		
	Antennen	1.000	468.0		
	Kabelbahnen	1.000	0.0		
	Leiter	1.000	232.0		
	Antennenersatzfläche	1.000	0.0		LX/XK4
	Summe		9414.9		
					MY WN (N
					I// A&N N
					1
4				۲	🕑 🗰 🖬 🖬

Bild 13.2: Maske 1.2 Eigengewicht

Zur Berücksichtigung einer Verzinkung der Profile sowie eines eventuellen Zusatzgewichts aus Verbindungsmitteln kann ein Erhöhungs-*Faktor* für die einzelnen Bauteilgruppen definiert werden.

13.3 Windlast - Teil 1

Der Wind ist bei Mastkonstruktionen aufgrund ihrer Bauform und Bauhöhe eine bemessungsrelevante Belastung. In Maske 1.3 werden hierzu die grundlegenden Eingaben zur Bestimmung der Windlast unter Berücksichtigung des Standortes und der Mastgeometrie vorgenommen.

Bild 13.3: Maske 1.3 Windlast - Teil 1

Durch die Böigkeit des Windes können Masttragwerke zum Schwingen angeregt werden. Zum Erfassen dieser Schwingungen sind dynamische Berechnungen notwendig. DIN 1055-4 Anhang C bietet die Möglichkeit, diese dynamische Berechnung durch Einführung eines Böenreaktionsfaktors auf eine statische Berechnung zurückzuführen. Wird in der vorliegenden Maske die Norm *DIN V 4131:2008-09 - Schwingungsanfällig* ausgewählt, so erfolgt die Ermittlung der Gesamtwindlast unter Berücksichtigung des Böenreaktionsfaktors.

Zur Bestimmung des Böenreaktionsfaktors ist die Berechnung der ersten Eigenfrequenz notwendig. Das Modul ermittelt die niedrigste Eigenfrequenz programmintern. Weitere Möglichkeiten zur Ermittlung des Böenreaktionsfaktors sind in Kapitel 13.5 auf Seite 60 zu finden.

Wind Richtungen

Nach DIN 4131 Anhang A 1.6 ist die Windrichtung umlaufend in einer 15° Schrittweite zu variieren. Standardmäßig sind die Vorgaben der Norm in Maske 1.3 voreingestellt. Man hat die Möglichkeit, die Schrittweiten sowie den Start- und Endwinkel zu ändern oder eigene manuelle Schrittweiten zu definieren.

Die vom Modul erzeugten Einzelschritte für die Windrichtung können als Muster abgespeichert werden. Wird die manuelle Definition der Schrittweiten aktiviert, so können gespeicherte Muster über die links dargestellte Schaltfläche eingelesen werden. 9

Staudruck nach DIN 1055-4

Die Windlastverteilung über die Strukturhöhe wird vom Modul MAST Belastung in Abhängigkeit von Windzone, Geländekategorie, Geländehöhe und gegebenenfalls unter Berücksichtigung des Topographiefaktors c_t ermittelt. Die Definitionen der Windzonen und Geländekategorien sind in DIN 1055-4 Anhang A und B geregelt.

Mit dem Topographiefaktor c_t wird die mittlere Windgeschwindigkeit unter Berücksichtigung der Lage des Mastbauwerks in Bezug auf windbeeinflussende Geländeformen wie Hügel oder Geländesprünge beeinflusst. Ist die Berücksichtigung von c_t aktiviert, so gelangt man über die Schaltfläche [Details] in die Detaileinstellungen für diesen Faktor.

Bild 13.4: Dialog Topographiebeiwert

Auf Grundlage der hier angegebenen Randbedingungen ermittelt MAST Belastung den Topographiebeiwert c_t automatisch. Eine manuelle Angabe dieses Beiwerts ist über die Auswahl in den Detaileinstellungen auch möglich.

Staudruck nach DIN 4131

Wird die Windbelastung nach DIN 4131:1991-1 ermittelt, so erfolgt dies im Modul unter Berücksichtigung der vier Windzonen und der Geländehöhe H_s. Die Geländetopographie kann durch Aktivierung der Staudruckerhöhung Δ q berücksichtigt werden.

Staudruck benutzerdefiniert

Sind Winddruckverhältnisse gegeben, die sich nach den bekannten Normen nicht kategorisieren lassen, so kann die Staudruckkurve manuell definiert werden.

Um die Definition der Staudruckwerte mit kleinen Schrittweiten rasch zu bewältigen, kann die Import/Export-Funktion zu MS Excel genutzt werden.

In der folgenden Tabelle 13.1 werden die Schaltflächen zur Unterstützung der manuellen Definition von Staudruckkurven beschrieben.

Schaltfläche	Funktion
	Windows-Rechner öffnen und berechneten Wert übernehmen
	Einlesen der Parameter aus der aktuell eingestellten Norm
	Exportieren der Tabellenwerte nach MS Excel
B	Importieren der Tabellenwerte aus geöffneter MS Excel-Datei
	Einlesen von als Muster gespeicherten Tabellenwerten
	Speichern der aktuellen Tabellenwerte als Muster

Tabelle 13.1: Schaltflächen zur manuellen Definition der Staudruckkurve

13.4 Windlast - Teil 2

Standardmäßig ermittelt das Modul MAST Belastung die aerodynamischen Kraftbeiwerte automatisch.

ingabedaten	1.4 Windlast - Te	il 2		
Basisangaben Eigengewicht	Grundkraftbeiwe	rt - Mast		Deboung - Mast
Windlast - Teil 1	Nach DIN 4131, Anhang A, Bild A.1 Benutzerdefiniert			Nach DIN 1055-4 Tab. 16
Windlast - Teil 2				
- Windlast - Ermittlung des Böen				Struktumone H: 32.000 [m]
Abschirmung	Völligkeitsgrad	Wind Frontal Wind	über Eck	Strukturbreite in Halbstrukturhöhe
Eislasten - Vereisungsklasse G Fislasten - Vereisungsklasse B	φ[%]	Cf0,1[·] Cf	2 700	Fund B Seiten b1: 3.40149 [m]
Verkehrslasten	50.0	2 080	2 500	L und R Seiten b2: 3.40149 [m]
	80.0	1.700	2.000	
	100.0	1.900	2.100	Benutzerdefinierte Dehnung
			🐴 😼	Fund B Seiten λ₁: 16.07 ⊕ [-]
				Lund B Seiten A2: 16.07
	-			
	Windlastverteilun	g an Mastseiten		
	Nur auf Masts	eiten, die dem Wind zugew	andt sind	
	🔘 Nach DIN 413	31, Anhang A, Tab. A1		
	Benutzerdefin	ierte Verteilung		
	Windrichtung	Anteil der	Windlast [%]	
	φ [°]	Zugewandte Mastseiten	beschattete Mastseit	eiten _
	0.00	57.0)	43.0
	15.00	57.0		43.0
	20.00	D / 1		43.0
	30.00	57.0		43.0
	30.00 45.00 60.00	57.0)	43.0
	30.00 45.00 60.00 75.00	57.0 57.0 57.0		43.0 43.0 43.0
	30.00 45.00 60.00 75.00 90.00	57.0 57.0 57.0 57.0 57.0 57.0		43.0 43.0 43.0 43.0 43.0

Bild 13.5: Maske 1.4 Windlast - Teil 2

Grundkraftbeiwert

Die Ermittlung des Grundkraftbeiwertes $c_{f,0}$ für räumliche Fachwerke erfolgt in Abhängigkeit des Völligkeitsgrades und unter Berücksichtigung der Windrichtung. Auch hier besteht die Möglichkeit, benutzerdefinierte Eingaben unter Zuhilfenahme der in Tabelle 13.1 beschriebenen Schaltflächen manuell zu tätigen.

Dehnung

Die Normen verwenden hier unterschiedliche Bezeichnungen. Die Dehnung entspricht nach DIN 4131 der Streckung λ . In DIN 1055-4 wird hier von der effektiven Schlankheit gesprochen. Standardmäßig wird die Dehnung nach DIN 1055-4 Tabelle 16 ermittelt.

Sollen der Berechnung benutzerdefinierte Werte zugrunde gelegt werden, so hat man die Möglichkeit, die Dehnungen für die parallelen Mastseiten F/B und L/R separat einzugeben.

Windlastverteilung an Mastseiten

Die Standardeinstellung für die Behandlung der Windlasten sieht vor, dass die dem Wind zugewandten Mastflächen zu hundert Prozent belastet werden und die abgewandten Flächen unbelastet bleiben. Eine anteilige Belastung der Flächen nach DIN 4131 Anhang A, Tabelle A1 und eine benutzerdefinierte Verteilung sind möglich. Zur manuellen Definition können die bekannten Schaltflächen (siehe Tabelle 13.1 auf Seite 59) verwendet werden.

13.5 Ermittlung des Böenreaktionsfaktors

Standardmäßig ermittelt das Modul MAST Belastung den Böenreaktionsfaktor voll automatisch. Basierend auf der kleinsten Eigenform der Maststruktur wird der Faktor bei schwingungsanfälligen Bauwerken nach dem Formelapparat der DIN 1055-4 mit Berücksichtigung der angegebenen Berechnungsparameter ermittelt.

atei Einstellungen Hilfe			
ingabedaten – Basisangaben – Eigengewicht – Windlast - Teil 1 – Windlast - Teil 2 – Windlast - Ermittlung des Böen	1.5 Windlast - Ermittlung des Böenreaktionsfaktors Ermittlungsart © Nach DIN V 4131:2008-09 © Automatisch © Crist Significances per und	Erste Eigenfrequenz Ohne Eis: 1.00 + [Hz] Eis G: 1.00 + [Hz]	
– Absenimung Eislasten - Vereisungsklasse G – Eislasten - Vereisungsklasse R – Verkehrslasten	C Harvell	Eis R: 1.00 + [Hz]	
	Berechnungsparameter Exponent ξ: 2.000 τ		
	Nach DIN 1055-4 :2005-03, Anhang F.3, Punkt (1) Parameter a1: 0.000		
	Parameter b1: 0.050 to a		

Bild 13.6: Maske 1.5 Windlast - Ermittlung des Böenreaktionsfaktors

Ist die erste Eigenfrequenz der Struktur bekannt, kann diese vorgegeben werden und der Böenreaktionsfaktor wird auf Basis des manuell definierten Wertes und der Berechnungsparameter ermittelt. Bei Vergleichsrechnungen kann es zur Sicherstellung der gleichen Ausgangssituation sinnvoll sein, den Böenreaktionsfaktor manuell zu definieren. Durch Aktivierung des Schalters *Manuell* kann der Böenreaktionsfaktor für die Lastfälle Eigengewicht, Eigengewicht mit Eis Vereisungsklasse G oder Eigengewicht mit Vereisungsklasse R vorgegeben werden.

Böenreaktionsfaktor	

Ohne Eis:	1.00 <table-cell-rows> [·]</table-cell-rows>
Eis G:	1.00 <table-cell-rows> [-]</table-cell-rows>
Eis R:	1.00 争 [·]

13.6 Abschirmung

gabedaten	1.6 Abschirmung				
Basisangaben	Objekt	Abschattungsfaktor	Kommentar	*	
igengewicht	Windrichtung o: 0 °			m	
Windlast - Teil 1	Aufsatzrohr unten	0.800			
Windlast - Teil 2	Innenschacht Nr. 1	0.800			
Windlast - Ermittlung des Böen	Leiter Nr. 1	1.000		-	•
Abschirmung	Kabelbahn Nr. 1	1.000		-	
- Eislasten - Vereisungsklasse G	Kabelbahn Nr. 2	1.000			× *
Eislasten - Vereisungsklasse R	Innere Ausfachung bei Eck:	0.800			
Verkehrslasten	Innere Ausfachung bei Eck	0.800			200
	Innere Ausfachung bei Eck:	0.800			
	Innere Ausfachung bei Eck:	0.800			
	🖃 Windrichtung o: 15 °				
	Aufsatzrohr unten	0.800			
	Innenschacht Nr. 1	0.800			
	Leiter Nr. 1	1.000			
	Kabelbahn Nr. 1	1.000			
	Kabelbahn Nr. 2	1.000			
	Innere Ausfachung bei Eck:	0.800			LXHK4
	Innere Ausfachung bei Eck:	0.800			12x112N
	Innere Ausfachung bei Eck:	0.800			KAN A
	Innere Ausfachung bei Eck:	0.800			
	Windrichtung φ: 30 °				
	Aufsatzrohr unten	0.800			7247773
	Innenschacht Nr. 1	0.800		-	E MARKEN N. S
	Leiter Nr. 1	1.000			177 TEXAN X 1
	Kabelbahn Nr. 1	1.000			1// V/M N
	nach Windrichtungen				1 Y
					🖛 (🖛
4 III.	U rur alle Windrichtungen gleich			- <u></u>	₿X ₿-Y

Bild 13.7: Maske 1.6 Abschirmung

Nach DIN V 4131 kann zur Berücksichtigung der Abschattung bei Einbauten und Außenanbauten mit einer reduzierten Windlast gerechnet werden. In Maske 1.6 hat der Anwender die Möglichkeit den Abschattungsfaktor anzupassen.

13.7 Eislasten - Vereisungsklasse G

In Maske 1.7 werden die Eislasten für eine allseitige, gleichmäßige Eisummantelung der Bauteile definiert.

Die Vereisungsklassen und die Eisrohwichte sind nach DIN 1055-5 Anhang A voreingestellt.

- Bassangaben - Eigengewicht Grunn - Windlast - Teil 1 Verei Windlast - Teil 2 Windlast - Teil 2 Windlast - Teil 2 - Abschimung - Eislasten - Vereisungsklasse R - Verkehrslasten - Ve	undangaben rreisungs- sse: G5 ♥ Klar- und 9.00 ∰ [kN/m ³] fluss auf Windlasten Windirsntheiwerte cro nach DIN 1055-5, Bild A.5 verändern	Dicke der Vereisung	g t Eisdicke t [mm] 50.0 50.0	
4				

Bild 13.8: Maske 1.7 Eislasten - Vereisungsklasse G

Die Dicke der Vereisung ist in Abhängigkeit der Vereisungsklasse vordefiniert und über die Masthöhe konstant verteilt. Der Anwender hat die Möglichkeit, hier benutzerdefinierte Vereisungsdicken anzugeben, wenn das Feld *Anwenderdefiniert* aktiviert wurde.

Die Berücksichtigung der Vergrößerung der Querschnitte bei der Ermittlung der Windbelastung nach DIN 1055-5 Anhang A, Kapitel A.4 kann ebenfalls in Maske 1.7 aktiviert werden.

13.8 Eislasten - Vereisungsklasse R

Die vorherrschende Windrichtung kann bei der Vereisung des Bauwerks zum Aufbau einer einseitigen, gegen den Wind anwachsenden kompakten Eisfahne führen.

Datei Einstellungen Hilfe			
Datei Einstellungen Hilfe Eingabedaten Baisangaben Eingengewicht Windlast - Teil 1 Windlast - Teil 2 Windlast - Teil 2 Windlast - Einstlung des Böen Abschimung Eislasten - Vereisungsklasse G Eislasten - Vereisungsklasse R Verkehrslasten	1.8 Eislasten - Vereisungsklasse R Grundangaben Vereisungs- klasse: R1 Windkraftbeiwerte cro nach DIN 1055-5, Bild A.6 verändern Verteilung über die Höhe Höhenfaktor nach DIN 1055-5, Formel (A.1) berücksichtiger:	Eisrohwichte für Raueis Automatisch Manuell Kote Eisgewicht RN/m 0.000 0.007 Eisfahnen in 10 m Höhe über Gelände Automatisch Manuell	0.0 0.002 0.004 0.007 [8N hutual the later hat a balance of a balanc
·, () () ()	Bei Vetteilung des Eisgewichts der Vereisung Bei Verteilung der Eisfahnen Längen L und D der Vereisung	Typ A Typ B Typ C Typ D Typ 4 > Stabbrete Eisfahnenlänge W [mm] D [mm] D [mm] 0.0 36.0 35.0 30.0 36.0 35.0 100.0 30.0 30.0 4.0 30.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	ОК Арыссы

Bild 13.9: Maske 1.8 Eislasten - Vereisungsklasse R

In Maske 1.8 hat man die Möglichkeit, durch Definition der entsprechenden Randbedingungen nach DIN 1055-5 diese Art der Vereisung bei der Lastgenerierung zu berücksichtigen. Die Typen der Eisfahnen werden vom Modul automatisch entsprechend dem Profiltyp erkannt.

Der Anwender kann aber auch die Form der Eisfahne durch Angabe der Länge *L* und Breite *D* manuell definieren. Die hier gemachten Angaben haben dann Einfluss auf die Windangriffsfläche, die durch das Eis beschrieben wird.

Details ...

13.9 Details

Über die links dargestellte Schaltfläche kann der Anwender in den Detaileinstellungen Einfluss auf die Windlastgenerierung, eine mögliche Reduktion der Gesamtwindlast und die Berücksichtigung der Eis- und Mannlasten nehmen.

Details	
Generierung der Windlasten Windlasten aus Fachwerkwänden generieren: Auf alle belasteten Stäbe Nur auf Eckstiele - Stablasten Nur auf Eckstiele - Knotenlasten	Berücksichtigung der Eis- und Mannlasten Berücksichtigen:
Reduzierung der Gesamtwindlast Gesamtwindlast reduzieren auf das Produkt aus dem Staudruck mit dem zweifachen Wert der geschlossenen Umrissfläche auf Ø Fachwerkwände Aufsatzrohr unten Ø Kabelbahnen Ø Innenschächte Ø Leitern	Berücksichtigung der Eis - und Mannlasten Lastfallkombinationen bilden nach: DIN 1055-100:2001-03 EN 1990:2002-04 Bei Tragfähigkeit-Situationen mit zusammenwirkendem Wind und Eis Lastfallkombinationen mit Wind als vorherrschender Einwirkung nicht berücksichtigen Bei Gebrauchstauglichkeit-Situationen Lastfallkombinationen mit Eis als vorherrschender Einwirkung nicht berücksichtigen
	OK Abbrechen

Bild 13.10: Dialog Details

13.10 Verkehrslasten

Die auf Mastbauwerke aufzubringenden Verkehrslasten sind in DIN V 4131 Kapitel 6.6 geregelt. In Maske 1.9 sind die entsprechenden Lastgrößen dementsprechend vorgegeben.

)atai Einstallungan Liifa		
ater Einstellungen Hille		
Eingabedaten Basisangaben	1.9 Verkehrslasten	
Eigengewicht	Verkehrslasten	
Windlast - Teil 1	🕼 Gleichmäßige Flächenlast auf Bühnen	
Windlast - Ermittlung des Böen	Flächenlast p : 2.000 😓 [kN/m²]	
Abschirmung	Flächenlast hei mehr als zwei Riihnen:	
Eislasten - Vereisungsklasse G	Außenbühnen pat 1.000 (+) [kN/m ²]	
Verkehrslasten		
	V Einzellasten auf Bühnen	
	Einzellast P 3.000 🚔 IkN1	
	Vertikallasten (Mannlasten) in Stabmitten an allen Stäben	
	Mit Stabneigung kleiner als: 30.00 🐳 [*]	
	Vertikallast PM: 1.500 (kN)	
	V Staudruck	
	Staudruck q: 0.300 [+] [kN/m ²]	
4 11 1		
	Generieren Kombinieren Details	OK Abbreche

Bild 13.11: Maske 1.9 Verkehrslasten

Der Anwender hat auch hier die Möglichkeit, bei von der Norm abweichenden Forderungen für die Verkehrslasten individuelle Belastungswerte anzugeben.

14. Ergebnisse

Generieren

Sind alle Daten vollständig eingegeben, startet man die Generierung der Belastung mit der Schaltfläche [Generieren].

Wurde die Belastung erfolgreich generiert, so ist im Navigationsbereich des Moduls MAST Belastung eine Übersicht der Ergebnismasken vorhanden.

14.1 Lastfälle

Die Maske 2.1 enthält eine Übersicht aller erzeugten Lastfälle. Das Modul hat dabei jedem Lastfall einen eindeutigen und bezeichnenden Namen gegeben.

ingabedaten	2.1 Lastfa	älle			
Basisangaben	Lastfall			T	
Eigengewicht	Nr	Lastfall - Bezeichnung	Kommentar		
Windlast - Teil 1	Figencew	icht		- E	
Windlast - Teil 2	Ligongon	Figenlast			
Windlast - Ermittlung des Böen		Ligoniust			
Abschirmung	Fis			-	
Eislasten - Vereisungsklasse G	LIF2	Frostnewicht - Klasse G		-	
Eislasten - Vereisungsklasse R	LF3	Frostgewicht - Klasse R		-	🖌 🔶 🖌 🖌
Verkehrslasten		riedgement reddeori	1	+	218 3
rgebnisse	Wind			-	200
Lastfälle	I F4	Wind 0 °		-	2 NHP
- Eigengewicht und Eisgewicht	1.65	Wind 0 ° Front G		-	
- Windlasten - Böenreaktionsfak	LEG	Wind 0 ° Frost G		-	SUR.
- Windlasten - Mast	1.67	Wind 15 °		-	SHK .
Windlasten • Horizontale Ausfa	LER I	Wind 15 ° Frost G		-	
Windlasten - Innere Ausfachur	1.69	Wind 15° Frost B		+	
	LE10	Wind 30 °		+	
	1F11	Wind 30 ° Frost G		+	i kang
	LF12	Wind 30 ° Frost B		+	
Windlasten - Antennenersatzflä	LE13	Wind 45 °		+	
Windlasten - Innenschächte	1 F14	Wind 45 ° Frost G		+	
Windlasten - Kabelbahnen	LE15	Wind 45 ° Frost B		+	
	LE16	Wind 60 °		+	
Windlasten - Begrenzung der \	LE17	Wind 60 ° Frost G		+	
	LE18	Wind 60 ° Frost B		-	- 11/ MARY N
	LF19	Wind 75 °		-	
	LE20	Wind 75 ° Frost G		+	- Y - C
	1 F21	Wind 75 ° Frost B		-	
				2 📑 🗳	X J-Y JZ

Bild 14.1: Maske 2.1 Lastfälle

14.2 Eigengewicht und Eisgewicht

Eigengewicht und Eisgewicht für Vereisungsklasse G und R werden in Maske 2.2 nach Maststruktur und Anbauteilen gegliedert angezeigt.

ngabedaten	2.2 Eigengewicht und Eisgewicht											
Basisangaben	Eigengewicht Eisgewicht											
- Eigengewicht	Objekt	F ₇ kNl	Ez G [kN]	Fz R [kN]								
- Windlast - Teil 1	Balkenetniktur		12,010-01	1 201 2 201 2								
Windlast - Teil 2	Eckstiele	17,883	31 742	0.668								
- Windlast - Ermittlung des Böen	Mastseiten	26 938	89.543	2 534								
Abschirmung	Horizontale Ausfachu	4 212	11 348	0.303								
– Eislasten - Vereisungsklasse G	Innere Ausfachungen	8 340	11 352	0.172								
– Eislasten - Vereisungsklasse R	Aufsatzrohr	1 172	2 700	0.072		★ ×						
- Verkehrslasten	Bühne Nr. 1	3 488	6 356	0.126								
gebnisse	Bühne Nr. 2	4 850	8 312	0.164	3 15	-						
Lastfälle	Bühne Nr. 3	4.968	8 584	0.167	- 3115							
Eigengewicht und Eisgewicht	Bühne Nr. 4	4.850	8 312	0.156								
- Windlasten - Böenreaktionsfak	Antennenträger	0.456	1 779	0.081								
- Windlasten - Mast	Innenschächte	6.956	34 940	1 216		1						
- Windlasten - Horizontale Ausfa	Summe	84.013	214.869	5 658		3						
- Windlasten - Innere Ausfachur	Junine	04.013	214.005	5.050		3						
- Windlasten - Bühnen	Kabalhabnan		Ś.									
- Windlasten - Antennen	Kabelbahn Nr. 1. Teil	0.000		(1)								
- Windlasten - Aufsatzrohr	Kabelbahn Nr. 2 - Teil	0.000	0.000	0.000		S.						
- Windlasten - Antennenersatzflä	Rabelbarin Ivr. 2 - Tell	0.000	0.000	0.000		1						
- Windlasten - Innenschächte	Junine	0.000	0.000	0.000		8						
- Windlasten - Kabelbahnen	Lotor					5=>						
- Windlasten - Leitern	Leiter Nr. 1 . 1	2 220	12 020	12 929		N. I						
- Windlasten - Begrenzung der \	Summo	2.320	12 020	12.000		NI -						
	Junine	2.320	13.335	13.355	// AU	1 M						
	Antonnonomateflächo				🔰 🔰 👔							
	Antennenersatzfläche	0.000	1 900	1 000		1 A A						
	Antennenersatzliache	0.000	0.502	0.502								
	Anterniteriersatzliache	0.000	0.000	0.000								
					State	T-Y Z						

Bild 14.2: Maske 2.2 Eigengewicht und Eisgewicht

Für alle Bauteilgruppen wird eine zusammenfassende Summe ausgegeben

14.3 Windlasten - Böenreaktionsfaktor

Wurde in Maske 1.3 die Ermittlung der Windbelastung nach *DIN V 4131:2008-09 - Vibrationsanfällig* oder nach *DIN 4131:1991* ausgewählt, so berechnet das Modul MAST Belastung zusätzlich den Böenreaktionsfaktor. Die Ergebnisse werden dann in Maske 2.3 dargestellt (siehe Bild 14.3 auf der folgenden Seite).

Ein programminterner Eigenwertlöser ermittelt die zur Berechnung erforderliche erste Eigenfrequenz. Diese wird in der Ergebnismaske ebenfalls ausgegeben. Wie der Böenreaktionsfaktor mit einer vorgegebenen ersten Eigenfrequenz ermittelt werden kann oder auch manuell vorgegeben werden kann, findet man in Kapitel 13.5 auf Seite 60.

Der Böenreaktionsfaktor G wird auch für die Maststruktur unter Eisbelastung ermittelt. Im unteren Teil der Maske werden die *Details* der Berechnung angezeigt. Zum Wechseln zwischen den Ergebnissen wird mit der Maus die jeweilige Zeile der oberen Ergebnistabelle ausgewählt.

Juter Emstendingen Thire												
Eingabedaten	2.3 Windlasten - Böenreaktionsfaktor											
Basisangaben		А		В		С						
- Eigengewicht	Bezeichnung Erste Eig	jenfrequenz	Böenre	aktionsf	aktor							
Windlast - Teil 1	nı	[Hz]		G					1 1			
- Windlast - Teil 2	Ohne Eis	2.450			2.171							
	Eisklasse G	1.239			2.327				h h			
Abschirmung	Eisklasse R	1.852			2.211				ի կ			
Eislasten - Vereisungsklasse G								-				
Eislasten - Vereisungsklasse H								Y.				
Verkenrslasten												
Ligebnisse								<u></u>				
Eisensennisht und Eisennisht								9				
Elgengewicht und Elsgewicht								2				
Windlasten Maat												
Windlasten - Horizontale Austr	Details - Bezeichnung Ohne	Details - Bezeichnung Ohne Eis										
Windlasten - Innere Austachur	🖃 Integrallängenmaß						*	1				
Windlasten - Rijhnen	Exponent	3	0.334		DIN 10	055-4:2005-03, A		1 A				
Windlasten - Antennen	Bezugshöhe	Ze	19.200	m	DIN 10	055-4:2005-03, A	Ξ	×7				
Windlasten - Aufsatzrohr	Mindesthöhe	Z min	7.000	m	DIN 10	055-4:2005-03, A						
Windlasten - Antennenersatzfli	Integrallängenmaß	Li(ze)	119.727	m	DIN 10	055-4:2005-03, A		¥4				
Windlasten - Innenschächte	Beiwert S											
	Höhe des Mastes	h	32.000	m								
	Breite des Mastes	b	3.620	m				725				
Windlasten - Begrenzung der \	Beiwert S		1.088		DIN 10	J55-4:2005-03, Ai		(MAR				
	Erwartungswert der Frequenz				DINAG							
	Mittlere Windgeschwindigke	Vm(Ze)	22.78	m/s	DIN 10	155-4:2005-03, A		₩ V	VII V			
	Erwartungswert der Frequer	VE,0	0.16	1/s	DIN 10	J55-4:2005-03, A		· · · · · · · · · · · · · · · · · · ·	¥ 1			
		0.	0.000		DIN 10	SEE 4-200E 02 A						
	Boengrundanteil	40	0.839		DIN IC	100-4:2005-03, Ai	T					
۰ III +						4		號 🗳 🛛 👪	x 🗗 🔽			

Bild 14.3: Maske 2.3 Böenreaktionsfaktor

14.4 Windlasten - Mast

In Maske 2.4 werden alle ermittelten Windlasten aufgelistet, die auf die Maststruktur einwirken.

atel Einstellungen Hilfe									
ingabedaten	2.4 Win	dlasten - Mast							
Basisangaben		A	В	C		D	-		
Eigengewicht	Abschnitt		Windlasten [kN]						1
Windlast - Teil 1	Nr.	Wgesamt	Wquer	Wparal	lel				1
Windlast - Teil 2	16	0.000	0.000)	0.000				
Windlast - Ermittlung des Böen	17	0.000	0.000)	0.000				💳 🔸 🔪
Abschirmung	18	0.000	0.000)	0.000			20	
– Eislasten - Vereisungsklasse G									ie ا
– Eislasten - Vereisungsklasse R		o:0 ° - Seite L							12
Verkehrslasten	1	0.541	0.541		0.000				
rgebnisse	2	0.460	0.460)	0.000		-		
Lastfälle	3	0.452	0.452	, ,	0.000		-		動
- Eigengewicht und Eisgewicht	4	0 444	0.444		0.000		-		
Windlasten - Böenreaktionsfak			0.111		0.000				
Windlasten - Mast	Details ·	- φ:0° - Seite F-	Abschnitt 17						
Windlasten - Horizontale Ausfa	F Absch	nitt							
Windlasten - Innere Ausfachur	Abs	chnitt	Nr	17			1		
Windlasten - Bühnen	Kot	e oben	Zo	24 000	m				
Windlasten - Antennen	Höt	10	h	5 000	m		=	(A)	
Windlasten - Aufsatzrohr	Höł	ne oben	7	8 000	m				
Windlasten - Antennenersatzflä	E Staud	nick	-	0.000					
- Windlasten - Innenschächte	Bez	uashöhe	7.0	5 500	m	DIN V 4131-2008-09 A			
Windlasten • Kabelbahnen	Sta	udnuck		0 197	kN/m2	DIN 1055-4-2005-03 A			
- Windlasten - Leitern	Sta	udnuck rechtwinklig z	9 UF ¹ Graabbulak	0.137	kN/m2	2111 1000 4.2000 00, 11	-		
- Windlasten - Begrenzung der \	E Vällick	eiteorad	di v q rechtwink	0.000	KIWIII		- 1		1/ N. 1
		diffische	Δ.,	24.626	m2	DIN V 4121-2009-09 A		WYW	M / N I
	Boz	warfläche	Autority	24.020	m2	DIN V 4131-2000-03, A		III N	
	Väll	iakeitearad	Allotrecht	2.320	9/	DIN 1055 4-2005-02 A			
	Guid	kraftheiwert	Ŷ	3.5	**	Dine 1035-4.2003-03, A	-	1	V V
	Gauna	Nandelweit							1
• III	Frost:	Alles 🔻 Wi	nd Richtung ⊄	Alles 🔻	Seite:	Alle Seiten 🔻	•		2 📅 🔽 🕻
	Europh		D-t-l-						

Bild 14.4: Maske 2.4 Windlasten Mast

14 Ergebnisse

Durch die Forderung der Norm, die Windbelastung in Teilschritten auf die Maststruktur aufzubringen, sind in dieser Ergebnismaske – je nach Vorgabe der Schrittweite in Maske 1.3 – große Datenmengen anzuzeigen. In der oberen Tabelle sind die Ergebnisse nach Windrichtung und Mastseite dargestellt. Im unteren Teil der Maske sind die zugehörigen Ergebnisdetails aufgelistet.

Um eine komfortable Ergebnisauswertung zu ermöglichen, stehen am unteren Rand der Ergebnismaske drei Auswahllisten zur Verfügung. Damit lässt sich der Inhalt der Ergebnistabelle wie folgt selektieren:

Die Option *Frost* ermöglicht es, die Windbelastung ohne Frost oder mit Berücksichtigung der jeweiligen Vereisungsklasse auszugeben. Über die Liste *Windrichtung* kann zum jeweiligen Teilschritt gesprungen werden. Durch Auswahl der *Seite* können die Ergebnisse nach den vier Mastseiten selektiert werden.

14.5 Windlasten - Horizontale Ausfachungen

A MAST Belastung - [Gittermast	_2+]						
Datei Einstellungen Hilfe							
Eingabedaten	2.5 Wind	dlasten - Horiz	ontale Ausfac	hungen			
Eingabedaten – Basisangaben – Eigengewicht – Windlast - Teil 1 – Windlast - Teil 2 – Windlast - Teil 2 – Windlast - Teil 2 – Statisten - Vereisungsklasse G – Eislasten - Vereisungsklasse R – Verkehrslasten Eigengewicht und Eisgewicht – Windlasten - Most – Windlasten - Most – Windlasten - Hotizontale Ausfa- – Windlasten - Bünnen – Windlasten - Antennen – Windlasten - Antennen	2.5 Wind Stab Nr. 250 251 252 253 253 255 256 Petails - Petails - Aus Kote Stab	A A Wo 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.088 0.095 0.095 0.095 0.095 0.096	ontale Ausfac B Windlast [kN] W x 0.095 0.095 0.095 0.0888 0.0888 0.0888 0.0888 0.	hungen C Wy 0.0000 0.00000 0.0000 0.00000 0.00000 0.00000 0.00000 0.000000 0.000000 0.00000000	m - Stab 2 3 30 m 54	D	
Windlasten - Antennenersatzflä Windlasten - Innenschächte Windlasten - Kabelbahnen Windlasten - Leitern	Bezugshöhe ze 24.000 m DIN Staudruck q 0.363 kN/m² DIN El Grundkraftbeiwert Image: Comparison of the second se					DIN 1055-4:2005-03, A DIN 1055-4:2005-03, A	
Windlasten - Begrenzung der \	Grur Abmino Län Höh Sch	ndkraftbeiwert derungsfaktor ge aller Stäbe in e des Stabes lankheit inderungsfaktor	c f,0 einer Li h λ Ψλ	2.0 3.4 0.0 70.0 0.9	00 m 80 m 50 m 00 11	DIN 1055-4:2005-03, A DIN 1055-4:2005-03, A DIN 1055-4:2005-03, A	
	Frost: 🖌 Exportie	Alles ▼ ren Kombini	Wind Richtun	g or Alles ◄ tails	•		OK Abbrecher

Maske 2.5 präsentiert die ermittelten Windlasten für die horizontalen Ausfachungen.

Bild 14.5: Maske 2.5 Windlasten - Horizontale Ausfachungen

Für diese Bauteile erfolgt die Ergebnisauswertung stabweise. Die Ergebnisausgabe kann hier über die in Kapitel 14.4 beschriebenen Auswahllisten für *Frost* und *Windrichtung* gefiltert werden.

Die Ergebnismasken 2.6 bis 2.13 für die weiteren Anbauteile lassen sich analog der oben beschriebenen Masken auswerten. Je nach Anbauteil können sich die Angaben zu den Windlasten auf die globalen Achsen beziehen oder es erfolgt die Richtungsangabe *parallel* und *quer*.

5

Wurden im Modul MAST Anbauten zum Beispiel keine Kabelbahnen definiert, so erscheint im Modul MAST Belastung für diese Anbauteile auch keine Ergebnismaske. Die Maskennummerierung ist dann nicht fortlaufend.

14.6 Windlasten - Begrenzung der Windlast

Nach DIN V 4131 Anhang A Abschnitt A.2.6.2.2 darf die Gesamtwindlast auf den Wert 2,0 * A_c * q begrenzt werden.

ingabedaten	2.14 Wir	dlasten - Begrenzung	a der Windlas	;t				
Basisangaben		A	B	1	C	D		
- Eigengewicht A	bschnitt	Max, Windlast	Windlast	t	Verhältnis	Reduzierung-	_	
Windlast - Teil 1	Nr.	Wmax [kN]	Wexist K	NI N	Nmax / Wexis	-faktor R		
Windlast - Teil 2		0:0°					_	
Windlast - Ermittlung des Böen 🧮	1	4.438		1 117	3.97	1.00	_	
- Abschirmung	2	8.662		3 5 3 3	2 45	1.00	_	
Eislasten - Vereisungsklasse G 👘	3	4.222		1.619	2.61	1.00	_	
Eislasten - Vereisungsklasse R 👘	4	4,147		1 590	2.61	1.00	_	
Verkehrslasten	5	8.064		3.009	2.68	1.00	_	
rgebnisse	6	3.914		1.501	2.61	1.00	_	
Lastfälle	7	16.272		6 602	2.46	1.00	_	
Eigengewicht und Eisgewicht	8	17.268		6.623	2.61	1.00		
Windlasten - Böenreaktionsfak 📛								
Windlasten - Mast)etails -	@:0°-Abschnitt7						
Windlasten - Horizontale Ausfa 🔓	= Vorbar	dene Windlast - Innens	chächte					
Windlasten - Innere Ausfachur 📙	Inne	nschächte (Abschnitte)						
- Windlasten - Bühnen	Sum	me von Windlasten	Wisses	0.0	(0) 70 LN		_	
Windlasten - Antennen	= Vorbar	dene Windlast - Kahelh	abnen	0.0			_	
Windlasten - Aufsatzrohr	Kab	elbahnen (Abschnitte)	Nr	2(6): 1	(6)		-	
Windlasten - Antennenersatzflä	Sum	me von Windlasten	W Kabalba	17	(0) /89 kN		_	
Windlasten - Innenschächte	= Vorhar	idene Windlast - Leitem	** Nabelba	1.7	05 101		-	
Windlasten - Kabelbahnen 🛛 💾	Leite	em (Abschnitte)	Nr	1	0			
	Sum	me von Windlasten	Wilaitara	0.2	82 kN		_	
Windlasten · Begrenzung der \	= Vorbar	idene Windlasten - Zusi	ammenfassung	1	.02			
	Sum	me von allen Windlaste	Wyork	66	02 kN		_	
F	- Reduz	eningsfaktor		0.0			- =	
	Vert	iältnis	Wmax/W	2	46			
	Red	uzierungsfaktor	R	1	00		-	
5			arrian a la					
	Froeh 14		The second se				and the second sec	AX A-V

Bild 14.6: Maske 2.14 Windlasten - Begrenzung der Windlast

Das Modul vergleicht die existierende Gesamtwindbelastung mit der Grenzwindbelastung und führt bei Überschreitung der letzteren den Reduktionsfaktor R ein.

Exportieren

14.7 Export der Ergebnisse

Zur weiteren Bemessung der Maststruktur müssen die erzeugten Lastfälle an RSTAB/RFEM übergeben werden. Durch Drücken der Schaltfläche [Exportieren] wird die Übergabe der in Maske 2.1 angezeigten Lastfälle gestartet. Zusätzlich erzeugt das Modul die Lastfallkombination *LK1 Mannlasten*. Nach DIN V 4131 Abschnitt 6.6 darf der Nachweis der Mannlast als Einzelkraft in Kombination mit der Windbelastung mit einem einheitlichen Staudruck von $q = 0.3 \text{ kN/m}^2$ geführt werden.

Ist eine Lizenz für das Zusatzmodul RSKOMBI/RF-KOMBI vorhanden, so ist nach dem erfolgreichen Export der Lastfälle der Start dieses Moduls direkt aus MAST Belastung möglich. Das KOMBI-Modul unterstützt den Anwender bei der Generierung der möglichen Lastfallkombinationen.

Kombinieren ...

15. Allgemeine Funktionen

Über die Menüleiste am oberen Rand der Maske sind verschiedene allgemeine Funktionen möglich.

15.1 MAST-Fall löschen

Es besteht die Möglichkeit einen MAST-Fall zu löschen über MAST-Menü

 $\textbf{Datei} \rightarrow \textbf{Fall löschen}.$

Nach dem Bestätigen der Auswahl wird der Fall gelöscht und das Modul geschlossen. Bereits exportierte Daten bleiben in RSTAB/RFEM erhalten.

15.2 Einheiten und Dezimalstellen

Die Einheiten und Nachkommastellen werden für RSTAB bzw. RFEM sowie für sämtliche Zusatzmodule zentral verwaltet. Im Modul **MAST Belastung** ist der Dialog zum Einstellen der Einheiten zugänglich über das Menü

Einstellungen \rightarrow Einheiten und Dezimalstellen.

Es wird der aus RSTAB bzw. RFEM bekannte Dialog aufgerufen, das MAST-Modul ist voreingestellt.

Einheiten und Dezimalste	llen -	Metrisch *				×
Einheiten und Dezimalste Programm / Modul 	llen -	Metrisch * MAST Belastung Daten Längen:	Einheit m •	Dez. Stellen		
		Winkel: Massen:	kg ▼			
DSTV STABDÜBEL HOHLPROF RSKNICK DEFORM RSBEWEG Stabe RSIMP MAST Struktur MAST Anbauten MAST Knicklängen	-					
0 🛛 🖻 📳	œ]			ОК	bbrechen

Bild 15.1: Dialog Einheiten und Dezimalstellen

Die Einstellungen können als Benutzerprofil gespeichert und in anderen Positionen wieder verwendet werden.

A Literatur

- [1] DIN V 4131:2008-09 Antennentragwerke aus Stahl
- [2] DIN 1055-4:2005-03 Einwirkungen auf Tragwerke Teil 4: Windlasten
- [3] DIN 1055-5:2005-07 Einwirkungen auf Tragwerke Teil 5 Schnee- und Eislasten
Α

Index В

Abschattungsfaktor 61
Abschirmung61
Antennen
Antennenersatzflächen 38
Antennengruppen
Antennenträger 35
Aufsatzrohr34
Ausfachungen9, 15, 19, 20, 48, 69
Ausfachungstyp 17
Ausleger 22
В
Basisangaben46, 55
Beenden von MAST
Benutzerprofil
Blättern in Masken
Böenreaktionsfaktor 60, 67
Breitenzunahme13
Bühnen
D
Dehnung
Dezimalstellen
E
Eckstielaufsatz
Eckstiele
Effektive Länge 50
Effektive Längen 51
Eigenfrequenz67
Eigengewicht 56, 67
Einheiten
Eisfahne 63
Eisgewicht67
Eislasten
Export 25, 42, 51, 70
F
Fachwerkstäbe50
G
Grundkraftbeiwert 59
Grundriss

Installation6 Kabelbahnen40 Knicklängen......44, 47, 50, 51

I

Κ

-
Knicklängenbeiwert50
Knoteneinspannungen47
Kommentar
Koordinatensystem49
L
Lastfälle
Leitern41
Μ
Mannlast64
Masken8, 55
MAST Anbauten27
MAST Belastung53
MAST Knicklängen44
MAST Struktur7
Mastlager
Mastschüsse13
Masttyp
Materialbibliothek12
Ν
Navigator8, 29, 55
Neigungen13
Nichtfachwerkstäbe51
Norden
0
Optionen
Р
Programmaufruf7, 27, 44, 53
Q
Querarme21
Querschnitte10
Querschnittsbibliothek
Querschnittsinfo11

S

Schwingungsanfällig	57
Stabdrehungen	24
Stabendgelenke	23
Starten von MAST	7, 27, 44, 53
Staudruck	58
Stückliste	25

V

Vereisung	62
Verkehrslasten	65
W	
Windlasten	57, 59, 67, 68
Windlastverteilung	60
Windrichtung	57, 59