

Vydání Prosinec 2012

Program

RFEM 5

Prostorové konstrukce metodou konečných prvků

Úvodní příklad

Všechna práva včetně práv k překladu vyhrazena.

Bez výslovného souhlasu společnosti ING. SOFTWARE DLUBAL S.R.O. není povoleno tento popis programu ani jeho jednotlivé části jakýmkoli způsobem dále šířit.

© Ing. Software Dlubal s.r.o.

Anglick	cá 28	120 00 Praha 2
Tel.:	+420 22	22 518 568
Fax:	+420 22	22 519 218
Email:	info@d	lubal.cz
Web:	www.d	lubal.cz

Obsah

	Obsah St	rana		Obsah S	itrana
1.	Úvod	4	5.2	Zatěžovací stav 2: Užitné zatížení v poli 1	29
2.	Konstrukce a zatížení	5	5.3	Zatěžovací stav 3: Užitné zatížení v	
2.1	Náčrt konstrukce	5		poli 2	31
2.2	Materiály, tloušťky a průřezy	5	5.3.1	Zatížení na plochu	31
2.3	Zatížení	6	5.3.2	Zatížení na linii	32
3.	Vytvoření modelu	_	5.4	Zatěžovací stav 4: Imperfekce	33
	konstrukce	7	5.5	Kontrola zatěžovacích stavů	35
3.1	Spuštění programu RFEM	7	6.	Kombinace zatěžovacích	
3.2	Vytvoření modelu	7		stavu	36
4.	Údaje o konstrukci	8	6.1	Vytvoření kombinací zatížení	36
4.1	Nastavení pracovního okna a rastru	8	6.2	Vytvoření kombinace výsledků	40
4.2	Zadání ploch	10	7.	Výpočet	41
4.2.1	První obdélníková plocha	10	7.1	Kontrola vstupních dat	41
4.2.2	Druhá obdélníková plocha	11	7.2	Vytvoření sítě konečných prvků	42
4.2.3	Spojení linií	13	7.3	Výpočet konstrukce	42
4.3	Zadání prutů	13	8.	Výsledky	43
4.3.1	Průvlaky	13	8.1	Grafické zobrazení výsledků	43
4.3.1.1	Ocelové nosníky	13	8.2	Tabulky výsledků	45
4.3.1.2	Deskový nosník	16	8.3	Filtrování výsledků	47
4.3.2	Sloupy	18	8.3.1	Pohledy	47
4.4	Zadání podpor	22	8.3.2	Výsledky na objektech	48
4.5	Kloubové a excentrické připojení prutu	24	8.4	Zobrazení průběhu výsledků	50
4.5.1	Kloub	24	9.	Dokumentace	51
4.5.2	Excentricita	25	9.1	Vytvoření výstupního protokolu	51
4.6	Kontrola zadání	26	9.2	Úprava výstupního protokolu	52
5.	Zatížení	27	9.3	Včlenění obrázků do protokolu	53
5.1	Zatěžovací stav 1: Vlastní tíha a		10.	Na závěr	56
	stropní konstrukce	27			
5.1.1	Vlastní tíha	28			
5.1.2	Stropní konstrukce	28			

1. Úvod

Na následujícím příkladu předvedeme základní funkce RFEMu. Jako každý software připouští i program RFEM různé postupy, z nichž si uživatel může v té které situaci podle uvážení vybrat. Na tomto jednoduchém příkladu si můžete sami nejlépe vyzkoušet jednotlivé možnosti.

Jako příklad nám poslouží sloupy podepřená stropní deska se dvěma průvlaky, kterou vyšetříme na zatěžovací stavy vlastní tíha a stropní konstrukce, užitné zatížení a imperfekce podle teorie I. a II. řádu.

Tento úvodní příklad lze zadat, spočítat a vyhodnotit i v demoverzi programu, která připouští maximálně dvě plochy a 12 prutů. Z tohoto důvodu prosíme o shovívavost, pokud model nesplňuje všechny realistické požadavky. Na příkladu bychom chtěli spíše předvést, jakými různými způsoby lze zadávat jednotlivé konstrukční prvky a zatížení.

V demoverzi není bohužel možné zadané údaje ukládat. Doporučujeme proto vyhradit si pro tento příklad dostatek času (tj. přibližně jednu hodinu). Všechny příslušné funkce si pak můžete v klidu vyzkoušet. Práci na modelu lze také přerušit, pokud program RFEM nezavřeme: při delších pauzách počítač nevypínejte, ale převeďte ho do pohotovostního režimu.

Práci na příkladu si ulehčíme, pokud můžeme používat dvě obrazovky najednou. Tento návod si můžete také vytisknout, pokud se chcete vyhnout neustálému přepínání mezi manuálem a programem RFEM.

V textu uvádíme popisované **ikony** (tlačítka) v hranatých závorkách, např. [Detaily...]. Tlačítka jsou zároveň zobrazena na levém okraji. **Názvy** dialogů, tabulek a jednotlivých nabídek jsou pak v textu vyznačeny *kurzivou*, aby bylo snadné vyhledat je v programu. Nezbytné vstupní údaje uvádíme **tučným** písmem.

Popis jednotlivých funkcí programu najdete v příručce k programu RFEM, kterou si můžete stáhnout na našich webových stránkách v sekci Download: www.dlubal.cz/Stahnoutmanualy.aspx.

Soubor **RFEM-Priklad-06.rf5** s údaji tohoto příkladu naleznete také v projektu *Příklady*, který se automaticky uloží při instalaci. Pokud se však chystáte podniknout první kroky v programu RFEM, pak Vám doporučujeme, abyste si projekt zkusili sami vytvořit. V případě nedostatku času lze na našich webových stránkách zhlédnout názorná videa z kategorie RFEM: www.dlubal.cz/Videa.aspx.

2. Konstrukce a zatížení

2.1 Náčrt konstrukce

Jako příklad nám poslouží železobetonová konstrukce podepřená sloupy.

Obr. 2.1: statická konstrukce

Železobetonová stropní konstrukce sestává ze dvou spojitých stropních desek s jedním železobetonovým a jedním ocelovým průvlakem. Konstrukce je podepřena sloupy, jejichž připojení na desku je ohybově tuhé.

Jak jsme již zmínili, daná konstrukce je víceméně "teoretický" model, který lze zpracovat i v demoverzi omezené na dvě plochy a 12 prutů.

2.2 Materiály, tloušťky a průřezy

Použijeme následující materiály: Beton C 30/37 a Ocel S 235.

Tloušťka stropu je 20 cm. Betonové sloupy a průvlak mají čtvercový průřez, délka strany přitom činí 30 cm. Na ocelový průvlak použijeme profil IPE 450.

2.3 Zatížení

Zatěžovací stav 1: Vlastní tíha a stropní konstrukce

Zatížení je dáno vlastní tíhou nosné konstrukce a tlakem stropní konstrukce o velikosti 0,75 kN/m². Vlastní tíhu není třeba počítat ručně; RFEM ji stanoví automaticky na základě použitých materiálů, tloušťky ploch a průřezů.

Zatěžovací stav 2: Užitné zatížení v poli 1

V případě obytného prostoru kategorie A2 je třeba počítat s užitným zatížením 1,5 kN/m² působícím na stropní plochu. Zatížení se bude uvažovat ve dvou různých zatěžovacích stavech, abychom zohlednili spojitý účinek.

Zatěžovací stav 3: Užitné zatížení v poli 2

l v druhém poli se bude uvažovat užitné zatížení o velikosti 1,5 kN/m². Dále na okraji stropu působí v kolmém směru liniové zatížení 5,0 kN/m. Představuje zatížení balkonem.

Zatěžovací stav 4: Imperfekce

Imperfekce je třeba zohlednit např. podle Eurokódu 2. Naklonění a zakřivení se zohlední v samostatném zatěžovacím stavu. Lze jim tak v kombinaci s jinými zatíženími přiřadit specifické dílčí součinitele spolehlivosti.

Pro zjednodušení se bude uvažovat u všech sloupů naklonění $\varphi_0 = 1/200$ proti směru osy Y. Počáteční prohnutí se podle Eurokódu 2 nemusí zohlednit.

3. Vytvoření modelu konstrukce

3.1 Spuštění programu RFEM

Start ightarrow Všechny programy ightarrow Dlubal ightarrow Dlubal RFEM 5.xx

nebo kliknutím na ikonu Dlubal RFEM 5.xx na pracovní ploše.

3.2 Vytvoření modelu

Otevře se pracovní okno. Systém nás v dialogu vyzve k zadání základních údajů pro novou úlohu.

V případě, že se nám ihned zobrazí některá konstrukce, zavřeme ji z hlavní nabídky **Soubor** \rightarrow **Zavřít** a otevřeme příslušný dialog příkazem v hlavní nabídce **Soubor** \rightarrow **Nový**.

Název modelu	Popis	
Úvodní příklad	Stropn í des	ka na sloupech
Název projektu	Popis	
🚞 Příklady	 Ukázkové ú 	ilohy
Složka:		*
C:\Users\Public\Documents\Dlu	ibal\Projects\Exam	ples
Typ modelu		Klasifikace zatěžovacích stavů a kombinací
3D		Podle normy:
0 2D XX (u= /au/au)	×	Žádná 🗸
2D - X7 (u2/9X/9Y)	2	
2D - XY (ux/ux/07)		Automaticky vytvořít kombinace
0 20 1/1 (0,001/42)		Ø Kombinace zatížení
		🔘 Kombinace výsledků (pouze pro lineámí analýzu)
Kladná orientace globální osy Z		Šablona
🔿 Nahoru		Otevřít šablonu modelu:
Olů		
Komentář		

Obr. 3.1: Dialog Nový model - Obecné

Ve vstupním poli *Název modelu* zadáme **Úvodní příklad**, v poli *Popis* napravo uvedeme **Stropní deska na sloupech**. Pole *Název modelu* je vždy třeba vyplnit, neboť tento údaj bude sloužit jako název souboru. Vstupní pole *Popis* může zůstat prázdné.

Ve vstupním poli *Název projektu* vybereme ze seznamu projekt **Příklady**, pokud již není přednastaven. *Popis* projektu a *Složka*, v níž se uvádí cesta k souboru, se pak zobrazí automaticky.

V sekci dialogu *Typ modelu* je již přednastavena volba **3D**, která umožňuje modelování v prostoru. Také *kladnou orientaci globální osy Z* ponecháme na přednastavené volbě **Dolů**.

Základní údaje modelu jsme tak definovali. Dialog zavřeme kliknutím na [OK].

4. Údaje o konstrukci

4.1 Nastavení pracovního okna a rastru

Nyní se nám zobrazí prázdná pracovní plocha.

Zobrazení

Nejdříve maximalizujeme pracovní okno kliknutím na vlevo znázorněné tlačítko, které se nachází v titulkové liště daného okna. Na pracovní ploše se nachází střed souřadnic s vyznačenými globálními osami X, Y a Z.

Polohu středu souřadnic na obrazovce lze měnit. Slouží k tomu tlačítko [Zapnout posun, zoom [Shift], natočení [Ctrl], resp. [Alt]] v panelu nástrojů. Kurzor se změní na symbol ručičky. Tahem při současném stisknutí levého tlačítka, popř. kolečka myši lze pak pracovní plochu libovolně posunovat.

Obdobně lze ručičkou pohled také otáčet nebo zvětšovat/zmenšovat:

- Natočení: táhneme pravým tlačítkem nebo kolečkem myši a držíme přitom klávesu [Ctrl]
- Zvětšení/zmenšení: táhneme pravým tlačítkem nebo kolečkem myši a držíme přitom klávesu [Shift]; stejného účinku lze dosáhnout i rolováním kolečka myši

Funkci lze ukončit několika způsoby:

- znovu klikneme na dané tlačítko
- stiskneme klávesu [Esc]
- klikneme pravým tlačítkem myši do pracovní plochy

Funkce myši

Používání myši odpovídá běžným standardům OS Windows. Jednoduchým kliknutím **levým** tlačítkem myši vybereme objekt k dalšímu zpracování, dvojím kliknutím otevřeme dialog pro úpravu objektu.

Klikneme-li na objekt **pravým** tlačítkem myši, vyvoláme jeho místní nabídku. Místní nabídka obsahuje příkazy a funkce, které lze u daného objektu použít.

Rolovací kolečko je velmi užitečným pomocníkem při práci v grafickém okně. **Rolováním** (otáčením kolečka myši) lze aktuální zobrazení zvětšovat, resp. zmenšovat. Pomocí stisknutého rolovacího kolečka myši lze konstrukci přímo přesouvat. Pokud přitom zároveň stiskneme klávesu [Ctrl], můžeme konstrukci natáčet. Konstrukcí lze otáčet také rolovacím kolečkem při současném stisknutí pravého tlačítka myši. Symboly, které se zobrazí na kurzoru myši, znázorňují vždy právě zvolenou funkci.

đ

Rastr

Pracovní rovina		Počátek praco	
Souřadnú sustém:			- K G
Standard	-	02810	
		Souřadnice:	X: 0.000 ** [m] Y: 0.000 ** [m] Z: 0.000 ** [m]
Rastr/Úchop Uchopení objekt	u Vodicí linie Hlad	liny na pozadí	Liniové rastry
Zobrazit	Тур	Počet bodů ra	astru
🔽 Rastr	Kartézský	🔄 Dynamicky	y podle velikosti modelu
Vzdálenost: 10 → [px]	Polámí	Směr	(+) (-) 1: 60 \$\Pri\$ 60 \$\Pri\$ 2: 60 \$\Pri\$ 60 \$\Pri\$
		Vzdálenost bo	odů rastru
	b b b i	Vzdálenost	b: 0.500 (m) h: 0.500 (m)
: † ±:/~	β	Natočení:	β: 0.00 ★ [*]
. n ₂		Vzdálenost lin	nií rastru
2		Počet	n1: 10 🛬

Obr. 4.1: dialog Pracovní rovina a rastr/úchop

Pro pozdější zadání v rastrových bodech je důležité, aby byla ve stavovém řádku aktivována tlačítka *ÚCHOP* a *RASTR*. Rastr tak lze v pracovní rovině vidět a jednotlivé body bude možné kliknutím na rastr uchopit.

Pracovní rovina je rastrovaná. Vzdálenost bodů rastru lze nastavit v dialogu *Pracovní rovina a rastr/úchop*. Tento dialog otevřeme pomocí stejnojmenného tlačítka v panelu nástrojů.

Pracovní rovina

Jako pracovní rovina je nastavena rovina XY. To znamená, že všechny graficky zadané objekty budou vloženy do této vodorovné roviny. Při zadání v dialogu nebo v tabulce nehraje pracovní rovina žádnou roli.

Přednastavené údaje jsou pro náš příklad vyhovující, proto ukončíme tento dialog kliknutím na [OK] a nyní již můžeme začít se zadáním konstrukce.

4.2 Zadání ploch

Uživatel může nejdříve zadat v grafickém okně nebo v tabulce rohové uzly, propojit je liniemi a na jejich základě vytvořit stropní plochu. Další možností, kterou zvolíme nyní i my, je zadat linie a plochy přímo v grafickém okně.

Strop lze definovat na základě obrysových linií jako spojitou plochu. Lze ho ovšem modelovat také pomocí dvou obdélníkových ploch s ohybově tuhým spojením na společné linii. V takovém modelu lze snáze zadat zatížení na dvě pole.

4.2.1 První obdélníková plocha

Obdélníkové plochy lze velmi rychle zadat z hlavní nabídky

$\textbf{Vložit} \rightarrow \textbf{Konstrukce} \rightarrow \textbf{Plochy} \rightarrow \textbf{Rovinná plocha} \rightarrow \textbf{Graficky} \rightarrow \textbf{Obdélník...}$

nebo kliknutím na rozbalovací tlačítko pro rovinné plochy v panelu nástrojů. Pokud klikneme na šipku [▼] u tohoto tlačítka, otevře se seznam s rozsáhlou nabídkou ploch různé geometrie.

Pokud zvolíme [Obdélník...], lze požadovanou plochu ihned vytvořit. Příslušné uzly a linie se vytvoří automaticky s plochou.

Po vyvolání této funkce se zobrazí dialog Nová obdélníková plocha.

lová obdélníková plocha	×
Plocha č.	Typ plochy
	Geometrie: Rovinna
Materiál	Tuhost: Standard 🔻 🐷
■ 1 Beton C30/37 EN 1992-1-1:2004/AC:2010	Tlouštka plochy 'Konstantnî
Tloušťka	
Ø Konstantní	
Tloušťka d: 200.0 🔻 🔃 [mm]	
🔘 Proměnná 🛛 💽	
	G
	T
Komentář	
-	
	OK Storno

Obr. 4.2: dialog Nová obdélníková plocha

Přednastavena je již Plocha č. 1. Tento údaj ponecháme beze změny.

Přednastaven je i *materiál: Beton C30/37* podle EN 1992-1-1. Pokud bychom chtěli použít jiný materiál, klikli bychom na tlačítko [Převzít nový materiál z databáze...] pod tímto políčkem.

V sekci *Tloušťka* ponecháme typ *konstantní*, hodnotu *tloušťky d* oproti tomu zvýšíme na **20** cm pomocí číselníku nebo ji ručně vyplníme v poli.

V sekci Typ plochy je nastavena tuhost odpovídající standardu.

Dialog zavřeme tlačítkem [OK]. Nyní můžeme desku zadat v grafickém okně.

Plochu lze snáze zadat, pokud nastavíme pomocí vlevo znázorněného tlačítka v panelu nástrojů [Pohled ve směru osy Z] ("Pohled shora"). Zadávací režim se tím nepřeruší.

Rozbalovací tlačítko pro rovinné plochy

RFEM - úvodní příklad © 2011 Ing. Software Dlubal s.r.o.

První roh desky zadáme kliknutím levým tlačítkem myši na **počátek rastru** (souřadnice X;Y;Z = **0,000;0,000;0,000**). Aktuální souřadnice kurzoru myši se zobrazí na nitkovém kříži.

Protilehlý roh desky na úhlopříčce zadáme kliknutím na bod rastru se souřadnicemi X;Y;Z = **6,000;5,000;0,000**.

Obr. 4.3: obdélníková plocha 1

Vytvořili jsme čtyři uzly, čtyři linie a jednu plochu.

4.2.2 Druhá obdélníková plocha

Funkce je stále aktivní, proto můžeme zadat ihned další plochu.

Klikneme na uzel č. **4** se souřadnicemi **6,000;0,000;0,000** a následně na bod rastru se souřadnicemi **10,000;8,000;0,000**.

	×						
						X: 10 Y: 8	.000
		 			 (к Ср	. 000

Obr. 4.4:obdélníková plocha 2

Vzhledem k tomu, že nechceme zadat žádnou další obdélníkovou plochu, ukončíme zadávací režim stisknutím klávesy [Esc] nebo kliknutím pravým tlačítkem myši do prázdné plochy v pracovním okně.

Číslování

5

Číslování uzlů, linií a ploch lze nejrychleji aktivovat tak, že klikneme pravým tlačítkem myši do prázdné plochy v pracovním okně a vybereme příslušný příkaz v místní nabídce.

	Opakovat - Nová obdélníková plocha graficky	Enter
	Pohled	+
	Uživatelský pohled	ŀ
23	Zobrazit číslování	
2	Zobrazit zatížení 6	
2	Zobrazit výsledky	
À	Zobrazit kóty	
~A	Zobrazit komentáře	
	Zobrazit skryté objekty v pozadí	
V	Zobrazit drátěný nebo plný model	
-	Zamknout/odemknout vodicí linie	
V	Zamknout/odemknout liniové rastry	
I],	Umožnit funkci Drag & Drop	
•	Automatické otáčení modelu	
Ø,	Automaticky spojovat linie/pruty	
Ç	Souřadný systém	
-	Pracovní rovina, rastr/uchopení,	
7	Podrobný výběr	
	Barvy v grafice podle	•
	Nastavení zobrazení	

V záložce *Zobrazit* v navigátoru v levé části obrazovky lze přesně nastavit, u jakých typů objektů se číslování zobrazí.

Obr. 4.6: navigátor Zobrazit - nastavení číslování

4.2.3 Spojení linií

X

Při zadání druhé plochy se vytvořila jedna její okrajová linie na jiné již existující linii - jedná se o "styčnou linii" obou ploch. Tento stav lze rychle napravit příkazem v hlavní nabídce

Nástroje ightarrow Spojit linie/pruty

nebo pomocí příslušného tlačítka v panelu nástrojů.

Po aktivaci dané funkce vybereme oknem celou konstrukci. Linie se automaticky upraví.

Obr. 4.7: výsledek s upravenými liniemi

Zadávací režim ukončíme tak, že stiskneme klávesu [Esc] nebo klikneme pravým tlačítkem myši do prázdné plochy v pracovním okně.

4.3 Zadání prutů

4.3.1 Průvlaky

U linií 3 a 7 stanovíme vlastnosti prutu, abychom definovali dva průvlaky.

4.3.1.1 Ocelové nosníky

Dvojím kliknutím na linii 7 otevřeme dialog *Upravit linii*, v němž přepneme do druhé záložky *Prut*. V ní zaškrtneme možnost *Přiřadit prut* (viz obr. 4.8). Zobrazí se dialog *Nový prut*.

Obecné Prut	Podepření Síťprvků Natočení			
Linie č. 7 Prut V Přířadit		y z	× hi	7
Nový prut	*			×
Obecné Možno	osti Vzpěmé délky Upravit tuhosti]		
Prut č.	Linie č.:	Typ prutu:		
1	7	Nosník	-	
Uzel č.		Zadání natočení pru	ıtu	
7.8		y k z	Konec	
Natočení prutu p			• P (X,Y,Z)	
o Uniu	β: 0.00 ▼ []	The second se	y v rovině x-y	
Pom. uzlu	C.: Uvnitř 🔻 🐧 🛅	Zacatek	β ⁱ Sy	
V rovině:	◎ x-y ○ x-z	z′ [∀]	Zde z β<0∘	7
Průřez				
Začátek prutu:				Ð
Konec prutu:	Jako počátek prutu		 Wytvořít r 	nový průřez na začátku p
Kloub na konci p	orutu			
Začátek prutu:	Není		- 🎦 📼	
Konec prutu:	Není		- 🍋 🔤	

Obr. 4.8: dialog Nový prut

Přednastavené údaje můžeme ponechat beze změny. Je třeba vytvořit pouze nový *průřez*. Pro zadání průřezu na *počátku prutu* použijeme tlačítko [Nový průřez na počátek prutu...].

IPE

8

Otevře se dialog *Nový průřez*. V pravé horní části dialogu následně klikneme na tlačítko [IPE], a zobrazíme tak dialog *Válcované průřezy - I-profil*. Z řady průřezů IPE vybereme profil **IPE 450** (viz obr. 4.9).

U válcovaných průřezů je předem nastaven materiál č. 2 - Ocel S235.

	Nový průřez Č. Barva tisku 1 S	Označení průřezu				
Válcované průřezy - I-profil				K		— X
Typ průřezu I Vác	Vybrat Rada I IFE I HE A I HE B I HE M	Výrobce/norma Euronom 1957 Euronom 5362 Euronom 5362 Euronom 5362	Vybrat Průřez * IPE 80 IPE 100 IPE 120 IPE 120 IPE 180 IPE 200 IPE 200 IPE 200 IPE 200 IPE 300 IPE 300 IPE 300 IPE 300 IPE 500 IPE 500 IPE 500 IPE 500 IPE 500 IPE 500 IPE 500	La Carto	PE 450 Euronorm 19-57	- y
Poznámka pro průřez: Vše v Skycina oblibených						

Obr. 4.9: výběr průřezu IPE 450

Po potvrzení zadaných údajů tlačítkem [OK] se průřezové hodnoty převezmou do dialogu *Nový průřez*.

lový průřez	X
Č. Barva tisku Označení průřezu 1 Image: Construction of the state of the sta	
Průřezové charakteristiky Pootočení Upravit	IPE 450 Euronorm 19-57
Průřezové charakteristiky	190.0
Momenty setrvačnosti	+
Kroutící IT: 67.10 + [cm ⁴]	21.0
Ohybový ly: 33740.00 € [cm ⁴]	
l₂: 1680.00 ↔ [cm ⁴]	
Průřezové plochy	8
Celková A: 98.80 >> [cm ²]	
Smyková Ay: 46.39 - [cm²]	9.4
Az: 39.82	
Sklon hlavních os	
Úhel α: 0.00 [*]	Z Z
Celkové rozměry (pro nerovnoměrné zatížení teplotou)	[] [mm]
Šířka b: 190.0 🜩 [mm]	ð 📑 🖬 🖬 🖾
Výška h: 450.0	Materiál
	2 Ocel S 235 DIN 18800:1990-11 -
Komentar	
	OK Storno

Obr. 4.10: dialog Nový průřez s průřezovými charakteristikami

Jakmile i v tomto dialogu klikneme na [OK], vrátíme se do výchozího dialogu *Nový prut*. Ve vstupním poli *Počátek prutu* je nyní uveden daný průřez. Dialog *Nový prut* i dialog *Upravit linii* nyní zavřeme kliknutím na tlačítko [OK]. Na okraji stropu se zobrazí ocelový nosník.

4.3.1.2 Deskový nosník

Stropní průvlak zadáme obdobně: dvakrát klikneme na linii *3*, a otevřeme tak dialog *Upravit linii*. V záložce *Prut* zaškrtneme opět možnost *Přiřadit prut* (viz obr. 4.8).

Zadání průřezu

Zobrazí se dialog *Nový prut*. Pro zadání průřezu na *počátku prutu* použijeme opět tlačítko [Nový průřez na počátek prutu...] (viz obr. 4.8).

V dialogu *Nový průřez* vybereme vpravo nahoře řadu masivních průřezů *REC*. V dialogu *Masivní průřezy - Obdélník* poté nastavíme šířku *b* a výšku *h* na **30** cm.

Obr. 4.11: dialog Masivní průřezy - Obdélník

Pokud klikneme na tlačítko [Informace o průřezu...], můžeme překontrolovat hodnoty daného profilu.

Jako materiál je u masivních průřezů předem nastaven materiál č. 1 - Beton C30/37.

Po potvrzení zadaných údajů tlačítkem [OK] se průřezové hodnoty převezmou do dialogu *Nový průřez*.

Poté, co i v tomto dialogu klikneme na [OK], se vrátíme do výchozího dialogu *Nový prut*. Ve vstupním poli *Počátek prutu* je nyní uveden daný obdélníkový průřez.

Zadání žebra

Průvlak lze v RFEMu modelovat jako prut typu *Žebro*. V horní části dialogu *Nový prut* změníme *typ prutu*: v seznamu vybereme položku *Žebro*.

RFEM - úvodní příklad © 2011 Ing. Software Dlubal s.r.o.

0

Obecné Možn	osti Vzpěmé délky Upravit tuhos	<i>t</i> i	
Prut č.	Linie č.:	Typ prutu:	
2	3	Žebro 🛛	~
W		Nosník	
Uzel č.		Tuhý prut	
3,4		Zebro	
		Prinradový prut Příhradový prut (pouzo Ni)	
		Tahový prut	
Natočení prutu	pomocí	Tlakový prut	
Úhlu	B: 0.00 ∰ [*]	Vzpěmý prut	
0	p	Lano	
🔘 Pom. uzlu	Č.: Uvnitř 👻 🇞 🎦	Lano na kladkách	
V rouină:		Výsledkový prut	
v tovine.	(a) x-y	Vazba vetkou ti vetkou ti	
	0 x-z	Vazba vetkriuti-vetkriuti	
Průřez		Vazba kloub-kloub	
Začátek prutu:	2 Obdélník 300/300 B	eton C30/37 Vazba kloub-vetknutí	a (A
		Pružina	
Konec prutu:	Jako počátek prutu	Nulový prut	90
Kloub na konci	prutu		
Začátek prutu:	Není	- (1)	
Konec prutu:	Není	- 🔁 💌	

Obr. 4.12: úprava typu prutu

1

Tlačítkem [Upravit typ prutu...] vpravo vedle seznamu otevřeme dialog Nové žebro.

Obr. 4.13: zadání žebra

Polohu žebra stanovíme na straně plochy +z. Jedná se o dolní stranu stropní desky.

Jako *spolupůsobící šířku* zadáme pro obě strany **L/8** a necháme program RFEM, aby plochy automaticky rozpoznal.

Následně zavřeme všechny dialogy tlačítkem [OK] a výsledek zkontrolujeme v pracovním okně.

Změna náhledu

Pomocí vlevo znázorněného tlačítka nastavíme [lzometrický pohled] pro prostorové zobrazení modelu.

Pomocí tlačítka [Zapnout posun, zoom [Shift], natočení [Ctrl], resp. [Alt]] můžeme zobrazení upravit (viz "Funkce myši" na straně 8). Kurzor se změní na symbol ručičky. Pokud nyní stiskneme klávesu [Ctrl], můžeme tahem myši konstrukcí otáčet.

Obr. 4.14: model konstrukce v izometrickém pohledu s navigátorem a zadanými údaji v tabulce

Kontrola údajů v navigátoru a v tabulce

Veškeré zadané objekty najdeme ve stromové struktuře navigátoru *Data* a také v příslušných záložkách tabulky. Položky v navigátoru lze (stejně jako ve Windows Exploreru) rozbalit kliknutím na [+]; mezi jednotlivými tabulkami lze přepínat kliknutím na názvy záložek.

V položce *Plochy* v navigátoru i v tabulce 1.4 *Plochy* se vstupní údaje k oběma plochám zaznamenají v číselné podobě (viz obrázek výše).

4.3.2 Sloupy

Nejsnáze lze sloupy vytvořit tak, že stropní uzly zkopírujeme dolů a zadáme pro proces kopírování určité údaje.

Výběr uzlů

7

Nejdříve vybereme uzly, které chceme zkopírovat. Použijeme k tomu funkci v hlavní nabídce

Úpravy \rightarrow Vybrat \rightarrow Podrobně...

nebo příslušné tlačítko v panelu nástrojů.

V dialogu *Podrobný výběr* je předem nastavena kategorie *Uzly*. Vzhledem k tomu, že chceme vybrat *všechny* uzly, můžeme údaje v tomto dialogu ponechat beze změny a potvrdit tlačítkem [OK].

Kategorie	Uzly		
Uzly Linie	Vše		
Plochy Průřezy Klouby na koncích prutu	S číslem: Ref. uzel č.:		
Excentricity prutu Pruty Žebra	S komentářem: S podporou:	Vše Vše	
	○ V oblasti od: do:	X [m] Y [m] 0.000 ⊕ h 0.000 ⊕ h 0.000 ⊕ h 0.000 ⊕ h	Z [m] 0.000 + K
	🔘 Se zatíž. na uzel:	Zatěžovací stav: Vše	•
	💿 Na ploše: 💿 Na linii:		1 1 1
Stav			
Přidat			
Vybrat ve stávajícím výběru			
Odstranit ze stávajícího výběru			
stávajícího výběru		OK	Sto

Obr. 4.15: dialog Podrobný výběr

Vybrané uzly se nyní znázorní odlišnou barvou; pokud je pozadí černé, je pro výběr přednastavena žlutá barva.

Kopírování uzlů

Vlevo znázorněným tlačítkem otevřeme dialog Posunout resp. kopírovat.

Počet kopií	
n: 1	Y X
Vztáhnout k souřadnému systému	Z dv
⊚ Globální souřadný systém X,Y,Z	
💿 Uživatelský souřadný systém U,V,W	dy dy
· · ·	
Vektor posunu	
dx: 0.000 🗭 [m]	
dy: 0.000 🖈 [m]	
dz: 3.000 = [m]	Přírůstek číslování pro
	Uzly: 1 🚽 🔽 Průběžně
	Pruty: I 🚽 V Průběžně
	Linie: V Průběžně
	Plochy: I 🖨 📝 Průběžně
	Tělesa: 1 ≑ 🗸 Průběžně

Obr. 4.16: Dialog Posunout resp. kopírovat

Počet kopií *zvýšíme z 0* na 1: uzly se tak neposunou, ale zkopírují. Sloupy jsou vysoké 3 m, proto uvedeme pro *vektor posunu dz* hodnotu **3,0** m.

Nyní klikneme na tlačítko [Nastavení dalších detailů...].

0

Nastavení detailů pro posun, rotaci a zrcadlení	X
Line mezi uzly	Zkopírované plochy eventské plochy (kuječe) zekopírovat
Není Vytvořit nová tělesa mezi vybranými plochami a jejich kopiemi Vzorové těleso č.: Není V	Lokální souřadné systémy Pří rotaci nebo zrcadlení automaticky vyrovnat lokální souřadný systém pro: Linie Pruty
Při rotaci vytvořit spojovací linie jako: © Přímé linie @ Kružnicový oblouk	Zatěžovací stavy Kopírovat včetně zatížení Vyrovnat při rotaci nebo zrcadlení zatížení uzlů
Duplicita	Automaticky spojit Spojit linie/pruty v případě, že se dotýkají
	OK Storno

Obr. 4.17: dialog Nastavení detailů pro posun, rotaci a zrcadlení

V sekci Spojit označíme následující možnosti:

Vytvořit nové linie mezi vybranými uzly a jejich kopiemi

Vytvořit nové pruty mezi vybranými uzly a jejich kopiemi

Jako *vzorový prut* vybereme ze seznamu prut č. **2**. Nové sloupy tak převezmou vlastnosti deskového nosníku (typ prutu, průřez, materiál).

Oba dialogy zavřeme tlačítkem [OK].

Úprava sloupů

Vzhledem k tomu, že jako vzorový prut jsme vybrali prut typu Žebro se spolupůsobící šířkou, je třeba typ prutu ještě upravit. Sloupy vybereme tentokrát jiným způsobem.

Nejdříve nastavíme pomocí vlevo znázorněného tlačítka [Pohled proti směru osy Y].

Nyní vyznačíme myší <u>zprava doleva</u> okno, které obsahuje uzly v patě sloupů. Pokud vytváříme okno tímto směrem, budou vybrány i objekty, které v okně leží jen částečně – tudíž i naše sloupy (při výběru zleva doprava se vyberou pouze objekty, které zcela leží v daném okně).

Obr. 4.18: výběr oknem

Nyní dvakrát klikneme na jeden z vybraných sloupů. Zobrazí se dialog *Upravit prut*. Čísla vybraných prutů jsou uvedena v seznamu *Prut č*..

Upravit prut			×
Obecné Možno	sti Vzpěmé délky Upravit tuhosti		
Prut č.	Linie č.:	Typ prutu:	
3-9	5,10-15	Nosník	2
Uzel č.		Nosník 43 Tuhý prut	
1,5; 2,9; 3,10; 4	,11; 6,12; 7,13; 8,14	Žebro	
		Prihradovy prut Příhradový prut (pouze N)	
Natočení prutu p	omocí	Tahový prut	
) Úhlu	β: 0.00 € ["]	Vzpěmý prut	
Pom uzłu	Č. Ukriž – K im	Lano Lano na kladkách	
V an in X		Výsledkový prut	
v rovine:	© x-z Ĵ	Vazba vetknut í-vetknut í	
Drůžez		Vazba vetknutí-kloub	
Začátek prutu:	2 Obdélník 300/300 Beton C30/37	Vazba kloub-vetknut í	a A
Konec prutu:	Jako počátek prutu	Pružina Nulový prut	30
Kloub na konci p	rutu		
Začátek prutu:	Není	 ▼ [▲] [
Konec prutu:	Není	- 🔁 💌	
		ОК	Stomo

Obr. 4.19: úprava typu prutu

Ø

Typ prutu změníme na **nosník** a dialog zavřeme tlačítkem [OK].

Opět nastavíme [Izometrický pohled]. Model konstrukce pak bude vypadat následovně.

Obr. 4.20: model konstrukce po vytvoření sloupů

4.4 Zadání podpor

V modelu konstrukce ještě chybí definovat podpory. Podpory lze v RFEMu zadat na uzlech, liniích, prutech či plochách.

Uzlové podpory

Sloupům je v patě bráněno ve všech směrech ve vodorovném posunu, nikoli však v natočení.

Uzly v patě sloupů jsou spolu se sloupy stále vybrány, pokud jsme mezitím neklikli do pracovního okna. V případě potřeby je vybereme oknem znovu (viz obr. 4.18).

Nyní dvakrát klikneme na jeden z patních uzlů. Vlevo dole ve stavovém řádku můžeme zkontrolovat, jestli se kurzor myši nachází na požadovaném uzlu.

Následně se otevře dialog Upravit uzel.

Upravit uzel	X
Souřadnice uzlu Podepření Síť prvků	
Uzel č.	
D, J 14	
V Přířadit	
Typ:	2
	Y X
	Z
	OK Stomo

Obr. 4.21: dialog Upravit uzel, záložka Podepření

V záložce *Podepření* označíme políčko *Přiřadit*. Vybraným uzlům se tak přiřadí typ podpory *Kloub*.

Po kliknutí na tlačítko [OK] se na modelu konstrukce zobrazí symboly podpor.

Změna pracovní roviny

Délku obou levých sloupů je ještě třeba upravit na 4 m. Nejdříve přepneme z vodorovné do svislé pracovní roviny.

V panelu nástrojů máme k dispozici tři tlačítka pro výběr pracovní roviny. Kliknutím na prostřední z nich nastavíme [Pracovní rovinu YZ].

Nyní vidíme, že rastr se rozpíná v rovině obou levých sloupů. Právě v této rovině tak lze graficky zadávat linie nebo posouvat uzly.

Úprava podporových uzlů

Tentokrát vybereme postupně myší se stisknutou klávesou [Ctrl] uzly 9 a 5.

Nyní posuneme jeden z vybraných uzlů **o 1 m** na bod rastru níže. Přitom je třeba dát pozor, abychom uchopili uzel a nikoli prut. Ve stavovém řádku lze opět zkontrolovat čísla uzlů a souřadnice kurzoru myši.

Obr. 4.22: posun dvou vybraných podporových uzlů

Dalším možným postupem by bylo dvakrát kliknout na jeden z daných uzlů a poté uvést správnou souřadnici Z v dialogu *Upravit uzel* v záložce *Souřadnice uzlu*.

4.5 Kloubové a excentrické připojení prutu

4.5.1 Kloub

Typ připojení neumožňuje ocelovému nosníku přenášet do sloupů ohybové momenty. Danému prutu je proto třeba přiřadit na obou stranách kloub.

Dvojím kliknutím na prut 7 otevřeme dialog Upravit prut.

V jeho spodní části v sekci *Kloub* klikneme na tlačítko [Nový kloub na počátku prutu...], abychom definovali typ kloubu na *počátku prutu* (srov. také obr. 4.25).

Kloub na konci p	rutu	\sim	
Začátek prutu:	Není 🗸	1	
Konec prutu:	Není 🗸		

Obr. 4.23: dialog Upravit prut, sekce Kloub

Otevře se dialog *Nový kloub na konci prutu*. V něm lze zaškrtnout vnitřní síly, které se v kloubu <u>nepřenáší</u>. V našem případě jsou to momenty *M_y* a *M_z*.

Kloub na konci	prutu č.	
1		X
Vztažný systér	n	7
Okální osy	prutu x,y,z	
🔘 Globální osy	vX,YZ - jako nůžkový kloub	MT
🔘 Globální nat	očené osy X',Y',Z' - jako nůžkový kloub	× North
Pořadí:	Natočení okolo	y vy My
ZYX 🔻		Z
	Y":	V _z
	×: 🔁 [*]	¥
Podmínky uvoln	ění	
Kloub	Tuhost	Nelinearita
🔲 N	CN : [kN/m]	Žádná 👻 📧
Vy Vy	C∨y : [kN/m]	Žádná 👻 📧
Vz Vz	Cvz : [kN/m]	Žádná 👻 🔚
Kloub		
Mt Mt	Cmt : [kNm/rad] Žádná 👻 💌
📝 My	C _{My} : 0.000 🔶 [kNm/rad] Žádná 🔻
📝 Mz	Cw₂ : 0.000 ⊕} [kNm/rad] Žádná 💌 🖲
Komentář	The line line line line line line line lin	
		1.44

Obr. 4.24: dialog Nový kloub na konci prutu

Ostatní předem nastavené údaje ponecháme beze změny a dialog zavřeme kliknutím na [OK].

V dialogu *Upravit prut* je nyní v poli pro kloub na *počátku prutu* uveden **Kloub 1**. Tento typ kloubu vybereme ze seznamu také v poli pro zadání kloubu na *konci prutu* (viz následující obrázek).

2

Obr. 4.25: přiřazení kloubu v dialogu Upravit prut

4.5.2 Excentricita

8

Ocelový nosník připojíme na spodní stranu stropní desky excentricky.

V dialogu *Upravit prut* přepneme do záložky *Možnosti*. V sekci *Excentricita prutu* klikneme na tlačítko [Nová excentricita...], a otevřeme tak dialog *Nová excentricita prutu*.

Obr. 4.26: dialog Nová excentricita prutu

Dlubal

4 Údaje o konstrukci

3

V něm zaškrtneme možnost *Příčné odsazení od průřezu dalšího objektu*. Tímto *objektem* je v našem případě daná stropní deska: pomocí funkce [Vybrat] můžeme příslušnou **plochu 2** vybrat graficky.

Uspořádání průřezu a *Odsazení osy* zadáme pomocí přepínačů tak, jak je znázorněno na obr. 4.26.

V sekci *Axiální odsazení od sousedních prutů* ještě označíme políčka u **začátku prutu** i **konce prutu**, aby odsazení platilo na obou stranách.

Poté, co údaje potvrdíme ve všech dialozích, můžeme výsledek zkontrolovat ve zvětšeném náhledu (zvětšení docílíme např. rolováním kolečka myši, posun náhledu provedeme tahem při současném stisknutí kolečka myši, natočení náhledu tahem kolečkem myši při současném stisknutí pravého tlačítka myši).

Obr. 4.27: ocelový nosník s kloubem a excentricitou

4.6 Kontrola zadání

Kontrola údajů v navigátoru Data a v tabulkách

Grafické zadání, které jsme si předvedli, se zaznamenalo také do navigátoru *Data* i do vstupních tabulek. Zobrazení navigátoru a tabulek lze zapnout, resp. vypnout příkazem v hlavní nabídce **Zobrazit** → **Navigátor**, příp. **Tabulka** nebo pomocí příslušných tlačítek v panelu nástrojů.

Objekty konstrukce jsou v tabulce rozděleny podle typů do jednotlivých záložek. Grafické zobrazení a tabulka jsou přitom interaktivní: pokud například hledáme určitou plochu v tabulce, pak otevřeme tabulku 1.4 *Plochy* a v grafickém okně myší vybereme danou plochu. Řádek, který se vyznačí odlišnou barvou, se vztahuje k vybrané ploše (viz obr. 4.14, strana 18).

V tabulce či v navigátoru můžeme rychle překontrolovat zadané údaje v číselné podobě.

Uložení dat

Zadání konstrukce jsme tímto dokončili. Soubor uložíme příkazem v hlavní nabídce

$\textbf{Soubor} \rightarrow \textbf{Uložit}$

nebo pomocí příslušného tlačítka v panelu nástrojů.

5. Zatížení

Navigátor Data obsahuje ve složce Zatěžování různé položky.

V zatěžovacích stavech zadáváme vlastní zatížení jako např. vlastní tíhu či užitná zatížení nebo zatížení větrem. Zatěžovací stavy pak lze skládat do kombinací podle určitých pravidel s uvážením dílčích součinitelů spolehlivosti (viz kapitola 6).

5.1 Zatěžovací stav 1: Vlastní tíha a stropní konstrukce

První zatěžovací stav obsahuje stálá zatížení od vlastní tíhy a stropní konstrukce (viz kapitola 2.3, strana 6).

K založení zatěžovacího stavu použijeme tlačítko [Nové zatížení na plochu graficky].

Obr. 5.1: tlačítko Nové zatížení na plochu graficky

Zobrazí se dialog Zatěžování.

Upravit zatěžovací stavy a kombinace		×
Zatěžovací stavy Kombinace zatížení Kombinace výs	edků	
Existující zatěžovací stavy	ZS č. Označení zatěžovacího stavu	Řešit
G ZS1 Vlastní tíha	1 Vlastní tíha	
	Obecné Parametry výpočtu	
	Typ účinku	
	G Stálé 🗸	
	Mastní tíha	
	₩ Aktivní	
	Y: 0.000 - [-]	
	Z: 1.000 [] [-]	
	Komentář	
	- Q	
		OK Stomo

Obr. 5.2:dialog Zatěžování, záložky Zatěžovací stavy a Obecné

Předem nastaven je zatěžovací stav č. 1 s typem účinku Stálé zatížení. Zbývá zadat označení zatěžovacího stavu. Uvedeme Vlastní tíha a stropní konstrukce.

5.1.1 Vlastní tíha

Vlastní tíha ploch a prutů se automaticky zohlední ve směru osy *Z*, pokud ponecháme hodnotu příslušného součinitele *aktivní*, přednastavenou na *1,000*.

5.1.2 Stropní konstrukce

Zadání potvrdíme tlačítkem [OK]. Otevře se dialog Nové zatížení na plochu.

Nové zatížení na plochu			X
Č. Na plochách č.			Typ zatížení 'Síla' Průběh zatížení 'Konstantní'
Typ zatížení	Směr zatížení		
⊚ Síla ⊙ Teplota ⊙ Protažení	Lokálně na skutečnou plochu:	© × ◎ y ◎ z	
Zakřivení Rotační pohyb	Globálně na skutečnou plochu:	 ○ XL ○ YL ○ ZL 	
 Konstantní Lineární v X Lineární v Y Lineární v Z 	Globálně na průmět:	© XP ◎ YP ◎ ZP	Směr zelíření '71 '
Velikost zatížení			X
Uzel č. Veliko 1.: 1 1 2.: 1 1 3:: 1 1 5:: 1 1 6:: 1	0.75 (kN/m ²) (kN/m ²) (kN/m ²)	- 	y z
			OK Storno

Obr. 5.3: dialog Nové zatížení na plochu

Stropní konstrukce působí jako zatížení typu *Síla*, průběh zatížení je *konstantní*. Ponecháme toto přednastavení stejně jako směr zatížení *Globálně na skutečnou plochu ZL*.

Ve vstupním poli pro *velikost zatížení* uvedeme hodnotu **0,75** kN/m² (viz kapitola 2.3, strana 6) a klikneme na [OK] pro potvrzení zadání.

Dialog se zavře a zatížení můžeme nyní graficky přiřadit stropní desce: kurzor myši se zobrazí s malým symbolem zatížení, který zmizí, jakmile kurzorem pohybujeme nad některou plochou. Zatížení vložíme kliknutím myší postupně na plochy **1** a **2** (viz obr. 5.4).

Pomocí tlačítka [Zobrazit zatížení s hodnotami] lze zobrazit hodnoty zatížení v grafickém okně.

Klávesou [Esc] nebo kliknutím pravým tlačítkem myši do prázdné plochy v pracovním okně ukončíme zadávací režim. Tímto jsme zatěžovací stav *Vlastní tíha a stropní konstrukce* kompletně zadali.

Obr. 5.4: grafické zadání zatížení na strop

÷8

5.2 Zatěžovací stav 2: Užitné zatížení v poli 1

Užitné zatížení působící na strop je kvůli spojitému účinku rozděleno do dvou různých zatěžovacích stavů. Nový zatěžovací stav vytvoříme příkazem z hlavní nabídky

Vložit \rightarrow Zatížení \rightarrow Nový zatěžovací stav…

nebo pomocí příslušného tlačítka v panelu nástrojů (nalevo od seznamu zatěžovacích stavů).

Zděčovací stavy Kombinace vjsledků Existují zděžovací stavy 25 č. Označení zděžovach stavu Řešť. I ZS2 Užtné zatičení IV IV Obcoré Parametry výpočtu IV IV Typ účinku IV IV IV IV I ZS2 Užtné zatičení IV IV IV IV I ZS2 Užtné zatičení IV IV </th <th>Jpravit zatěžovací stavy a kombinace</th> <th></th> <th>×</th>	Jpravit zatěžovací stavy a kombinace		×
Existujci zatěžovací stavy ZS č. Označení zatěžovach stavu Řešt Z Užné zatižení Obecné Paramety výpočtu Typ účinku Obecné Paramety výpočtu Vastní tha Aktivní Součintel ve smôtu: V: V: </th <th>Zatěžovací stavy Kombinace zatížení Kombinace výsle</th> <th>dkù</th> <th></th>	Zatěžovací stavy Kombinace zatížení Kombinace výsle	dkù	
Image: Single Singl	Existující zatěžovací stavy	ZS č. Označení zatěžovacího stavu	Řešit
Correct Statuterit View Statute	G ZS1 Vlastní tíha	2 Užtné zatížení 🗸	
Typ Ginku Image: Soutimited ve smëtur X: Image: Soutimited ve smëtur Y: Image: Soutimited ve smëtur Y: Image: Soutimited ve smëtur Image: Soutimited ve smëtur <th>UZITNE Zatizeni</th> <th>Obecné Parametry výpočtu</th> <th></th>	UZITNE Zatizeni	Obecné Parametry výpočtu	
		Τνο ύζικμ	
Vasní tihe Aktivní Součinitel ve směru: X: boli [] Z: boli [] Z: boli [] Komenář		Qi Užitné 🗸	
		Vastní tíha	
		Aktivní	
		Součinitel ve směru:	
		X:	
Konerář			
Konertář			
Konerář			
Konertář			
Komertář			
Komentář			
1 WHITE ROL		Komentář	
Pole 1 🗸 🔞		Pole 1	
D CK Some			OK Stomo

Obr. 5.5: dialog Zatěžování, záložka Zatěžovací stavy

V poli Označení zatěžovacího stavu uvedeme **Užitné zatížení** nebo danou položku vybereme ze seznamu.

Typ účinku se automaticky nastaví na **Q**_i **Užitné zatížení**. Tento údaj hraje roli při stanovení dílčích a kombinačních součinitelů při skládání zatížení do kombinací.

Jako komentář můžeme pro bližší určení zatěžovacího stavu uvést Pole 1.

Údaje zadané v dialogu potvrdíme tlačítkem [OK]. Nyní můžeme plošné zatížení zadat jiným způsobem: nejdříve plochu č. 1 stropní desky vybereme myší. Pokud nyní otevřeme pomocí tlačítka [Nové zatížení na plochu graficky] příslušný dialog, je v něm číslo plochy již vyplněno.

Nové zatížení na p	lochu				×
Č	Na plochách č. 1			5	Typ zatížení 'Síla' Průběh zatížení 'Konstantnî
Typ zatížení Síla Teplota Protažení Zakřivení Rotační pohyb.		Směr zatížení Lokálně na skutečnou plochu: Globálně na skutečnou plochu:	© × © y © z © XL © YL		
Průběh zatížení Konstantní Lineární Lineární v X Lineární v Y Lineární v Z		Globálně na průmět:	© ZL ○ XP ○ YP ○ ZP		Smér zatížení 'ZL'
Velikost zatížení Uzel č. 1. : 1 * 2. : 1 * 3.: 1 *	Veliko	st 1.50 (kN/m ²) (kN/m ²) (kN/m ²) (kN/m ²)			y x
Komentář]			•	OK Storno

Obr. 5.6: dialog Nové zatížení na plochu

Užitné zatížení působí jako zatížení typu *Síla*, průběh zatížení je *konstantní*. Ponecháme toto přednastavení stejně jako směr zatížení *Globálně na skutečnou plochu ZL*.

Ve vstupním poli pro *velikost zatížení* uvedeme hodnotu **1,5** kN/m² (viz kapitola 2.3, strana 6) a klikneme na [OK] pro potvrzení zadání.

Plošné zatížení se zobrazí v levém poli stropu.

码

5.3 Zatěžovací stav 3: Užitné zatížení v poli 2

Pro zadání užitného zatížení v pravém poli vytvoříme [Nový zatěžovací stav...].

atěžovací stav	Y Kombinace zatížení Kombinace v	rýsledků			
xistuiící zatěžo	ovací stavy	ZS č.	Označení zatěžovacího stavu	Řešit	
G ZS1	Vlastní tíha Užtné zatížení	3	Užitné zatížení	- ▼	
Qi ZS3	Užitné zatížení	Obecné Pa	rametry výpočtu		
		Typ účinku			
		Qi Užitné		•	
		Vlastní tíha			
		🥅 Aktivn í			
		Součinite	l ve směru:		
		Ŷ.			
		Z:			
		Komentář			
		Pole 2		▼ 100	

Obr. 5.7: dialog Zatěžování, záložka Zatěžovací stavy

Označení zatěžovacího stavu bude znovu **Užitné zatížení**. Jako *komentář* uvedeme **Pole 2** a dialog zavřeme kliknutím na tlačítko [OK].

5.3.1 Zatížení na plochu

Tentokrát vybereme plochu č. 2 stropní desky a poté tlačítkem [Nové zatížení na plochu graficky] otevřeme dialog *Nové zatížení na plochu*.

Kromě plochy č. 2 jsou dále předem nastaveny parametry naposledy zadávaného plošného zatížení (typ zatížení *Síla*, průběh zatížení *konstantní*, směr zatížení *Globálně na skutečnou plochu ZL*, *velikost zatížení* **1,5** kN/m²). Tyto údaje není potřeba měnit, proto klikneme na [OK].

Plošné zatížení se zobrazí v pravém poli stropu (viz obr. 5.8).

5.3.2 Zatížení na linii

Zadání liniového zatížení na zadní okraj stropu si usnadníme, pokud danou oblast zvětšíme pomocí tlačítka [Zoom oknem] v panelu nástrojů nebo rolováním kolečka myši.

Pomocí tlačítka [Nové zatížení na linii graficky] (bezprostředně vedle tlačítka pro zadání plošného zatížení) otevřeme dialog *Nové zatížení na linii*.

Zatížení na linii působí jako zatížení typu *Síla,* průběh zatížení je *konstantní* ve směru *Globálně vztaženo na skutečnou délku linie ZL*. Ve vstupním poli *Hodnoty zatížení* uvedeme **5** kN/m (viz kapitola 2.3, strana 6).

Po potvrzení zadání tlačítkem [OK] klikneme v grafickém okně na linii **8** na zadním okraji stropu (číslo linie se nám pro kontrolu zobrazí ve stavovém řádku).

Zadávací režim ukončíme stisknutím klávesy [Esc] nebo kliknutím pravým tlačítkem myši do prázdné plochy v pracovním okně a následně opět nastavíme [Izometrický pohled].

5.4 Zatěžovací stav 4: Imperfekce

V posledním zatěžovacím stavu zadáme imperfekce u sloupů zatížených normálovou silou.

Tentokrát použijeme k vytvoření nového zatěžovacího stavu navigátor *Data*: pravým tlačítkem myši klikneme na položku *Zatěžovací stavy*, a otevřeme tak místní nabídku, v níž vybereme funkci *Nový zatěžovací stav...*

Obr. 5.9: místní nabídka položky Zatěžovací stavy

Jako označení zatěžovacího stavu vybereme ze seznamu **Imperfekce proti -Y**. *Typ účinku* se přitom automaticky změní na **Imp Imperfekce**.

alezovaci sta	vy Kombinace zatížení Kombinace v	výsledků			
xistující zatě	žovací stavy	ZS č.	Označení zatěžovacího stavu	Řešit	
G ZS1	Vlastní tíha	4	Imperfekce proti +Y	▼	
Qi ZS2	Užitné zatížení	Obarat			
mp ZS3	Uzitne zatizeni Imperfekce proti +Y	Obeche Paran	etry vypočtu		
		Typ účinku			
		Imp Imperfekt	e	-	
		Vlastní tíha			
		🔲 Aktivní			
		Součinitel ve	směru:		
		X:	÷ [·]		
		Y:			
		Z :	÷ F		
					_
		Komentář			

Obr. 5.10: dialog Zatěžování, záložka Zatěžovací stavy

Dialog zavřeme kliknutím na [OK].

🝓 🚽 🗄 🐯 🔍 🍳 🗊 🗗 🕅 🗔 📆 📆 웝 Nové zatížení na těleso 97 Nové volné osamělé zatížení... **9** Nové volné liniové zatížení... 97 Nové volné obdélníkové zatížení... 2 Nové volné kruhové zatížení... • Nové volné polygonové zatížení... 4 Nová vynucená deformace uzlu... Nový vynucený posun linie.. X Nová imperfekce… hr

Rozbalovací tlačítko pro zadání zatížení

V seznamu u tlačítka [Nové zatížení na těleso graficky] vybereme položku *Nová imperfekce...*, a otevřeme tak následující dialog:

Dlubal

č.	Vztáhnout na	Na prutech č.	- 0.º	r 40°
1	⊚ Pruty ⊘ Seznam prutů ⊘ Sady prutů			a z u
Směr	Parametry			
Lokální 💿 y osa: 💿 z	Reference:	I Relativně ○ Absolutně	ž	zv
Hlavní osa: O u O v	Pootočení φ ₀ :	1 / 200.00 👘 [•] 🐻 🚺	•	
	Zakřivení wp/L :			<i>;</i> }
	Kritérium působení počátečního prohnutí:	-		
		ε₀: [·]	φοι	The last
Komentář			×	+y/z
		-		u / v
2 0.00				OK Storno

Obr. 5.11: dialog Nová imperfekce

Imperfekci zadáme ve *směru* os **y** daných sloupů – ve směru ,slabé' osy prutů, která je v našem příkladu rovnoběžná s globální osou Y.

Údaje v dialogu potvrdíme tlačítkem [OK].

Imperfekci můžeme snadno přiřadit pomocí výběrového okna. Model bychom však měli nejdříve zobrazit v příhodnějším pohledu: klikneme na tlačítko [Zapnout posun, zoom [Shift], natočení [Ctrl], resp. [Alt]] a sklopíme modul konstrukce mírně dozadu pomocí stisknutého levého tlačítka myši spolu s klávesou [Ctrl]. Stisknutím klávesy [Esc] nebo kliknutím pravým tlačítkem myši do prázdné plochy v pracovním okně ukončíme úpravu náhledu, aniž bychom přerušili funkci výběru prutů pro přiřazení imperfekcí.

Znovu vyznačíme myší zprava doleva výběrové okno. Okno by přitom mělo obsáhnout všechny sloupy; ocelový nosník musí ležet vně výběrového okna.

Obr. 5.12: výběr sloupů pro přiřazení imperfekcí

G

V okamžiku, kdy myší stanovíme druhý roh výběrového okna, se imperfekce přiřadí.

Klávesou [Esc] nebo kliknutím pravým tlačítkem myši do prázdné plochy v pracovním okně danou funkci ukončíme. Nyní opět nastavíme [lzometrický pohled].

Obr. 5.13: znázornění imperfekcí na drátěném modelu

Změna typu zobrazení

Na obrázku výše je konstrukce znázorněna jako *drátěný model*. Tento typ zobrazení můžeme nastavit pomocí vlevo znázorněného tlačítka. Imperfekce tak nejsou zakryty sloupy jako v renderovacím režimu.

5.5 Kontrola zatěžovacích stavů

Všechny čtyři zatěžovací stavy jsou nyní kompletně zadány. Doporučujeme v daném stavu údaje znovu [Uložit].

Nyní můžeme v rychlosti jednotlivé zatěžovací stavy překontrolovat v grafickém okně: listovat zatěžovacími stavy lze pomocí tlačítek [4] a [▶] v panelu nástrojů (tlačítka pro předchozí, resp. následující zatěžovací stav).

Nástroje <u>T</u> abulka Nasta <u>v</u> ení Přídavné modu <u>l</u> y	<u>O</u> kno <u>N</u> ápověda
🖥 📗 📰 🛛 🂁 ZS3 - Užitné zatížení	× 😒 > 🕑 🎦 🕿 🗯 🕼 📾 📾 📲 🏶
🛅 - 🤝 - 🗊 🔐 - I 🂱 - 🌯 🍇 🍇 🚳	- 🕅 Předchozí ZS, KZ, KV, 🕅 🗊 🛣 - 🛂 - 🛙 🧭 -

Obr. 5.14: listování jednotlivými zatěžovacími stavy

Také v případě zatížení se graficky zadané údaje zaznamenají jak do navigátoru *Data* tak do vstupních tabulek. Příslušné údaje najdeme v tabulce 3 *Zatížení*, kterou můžeme nalistovat po kliknutí na vlevo znázorněné tlačítko.

Grafické zobrazení a tabulka jsou přitom opět interaktivní: pokud například hledáme některou imperfekci v tabulce, pak otevřeme tabulku 3.13 *Imperfekce* a v grafickém okně myší vybereme dané zatížení. Kurzor myši se následně přesune do příslušného řádku v tabulce.

Kombinace zatěžovacích stavů 6.

Zatěžovací stavy se budou skládat do kombinací podle EN 1990 s uvážením příslušných součinitelů. Bude se přitom vycházet z typu účinku, který se stanoví při založení každého nového zatěžovacího stavu (viz obr. 5.10, strana 33). Na základě typu účinku se určí příslušné kombinační a dílčí součinitele, které se budou uvažovat při vytváření kombinací zatížení.

Vytvoření kombinací zatížení 6.1

Na základě daných čtyř zatěžovacích stavů se vytvoří následující kombinace zatížení:

- 1,35*ZS1 + 1,5*ZS2 + 1,0*ZS4
 - 1,35*ZS1 + 1,5*ZS3 + 1,0*ZS4
- Užitné zatížení v poli 1
- 1,35*ZS1 + 1,5*ZS2 + 1,5*ZS3 + 1,0*ZS4
- Užitné zatížení v poli 2
 - Plné zatížení

Výpočet se provede podle teorie druhého řádu.

Vytvoření KZ1

•

Otevřeme seznam za rozbalovacím tlačítkem [Upravit zatěžování] a vybereme funkci [Nová kombinace zatížení...]. Zobrazí se opět dialog Zatěžování.

Jpravit zatěžovací stavy a kombinace								×
Zatěžovací stavy Kombinace zatížení Kombinace v	ýsledků							
Existující kombinace zatížení	KZ č.	Označení kombinace zatížení					Řešit	
KZ1 Užitné zatížení v poli 1	1	Užitné zatížení v	poli 1			•		
	Obecné Para	ametry výpočtu						
	Existující zatěž	iovací stavy		Zatěžova	icí stavy v komt	inaci zatížení	KZ1	
	G ZS1	Vlastní tíha		1.35	G ZS1	Vlastní tíha		
	Qi ZS2	Užitné zatížení		1.50	Qi ZS2	Užitné zatíže	ení	
	Qi ZS3	Užitné zatížení		1.00	Imp ZS4	Imperfekce j	proti +Y	
	Imp ZS4	Imperfekce proti +Y						
			4					
	7 V	/še (4) 🔻 🖉 🖉	J	1.00 -	V			
	Komentář							
└── └ ─ ∨ še (1) ▼ X						-		2
							ОК	Stomo

Obr. 6.1: dialog Zatěžování, záložka Kombinace zatížení

Jako označení kombinace zatížení uvedeme Užitné zatížení v poli 1.

V záložce Parametry výpočtu ověříme, zda je označena Analýza podle teorie II. řádu (viz následující obrázek).

>

RFEM - úvodní příklad © 2011 Ing. Software Dlubal s.r.o.

6 Kombinace zatěžovacích stavů

Existující kombinace zatížení	KZ č. Označení kombinace zatížení	Řešt
KZ1 Užtné zatížení v poli 1	Užtné zatížení v poli 1	▼ 🕅
	Parametry výpočlu Metoda sanájizy I řád (geonatický hreámi výpočat) Pavýza podel II řádu (P-Deta) Pavýza věkol dolmací Postotická anájiza Metoda pro řešení systému Nekora-Raptnonova anájiza komb. s Picardovou Picardove Nekora-Raptnonova skontakní máticí tuhosti Nekora-Raptnonova skontakní máticí tuhosti Nekora-Raptnonova skontakní máticí tuhosti Medňkovaná Nekora-Raptnonova	Možnosti

Obr. 6.2: záložka Parametry výpočtu

Po kliknutí na tlačítko [OK] se na modelu konstrukce zobrazí veškerá zatížení z dané kombinace.

Obr. 6.3: zatížení z kombinace KZ1

V záložce *Parametry výpočtu* můžeme překontrolovat zadání, z něhož RFEM vychází při výpočtu jednotlivých kombinací zatížení.

Vytvoření KZ2

Obdobně vytvoříme druhou kombinaci zatížení: použijeme tlačítko [Nová kombinace zatížení...] v panelu nástrojů a jako *označení kombinace zatížení* tentokrát uvedeme **Užitné zatížení v poli 2**.

 Image: State Stat

Daná kombinace bude zahrnovat zatěžovací stavy **ZS1**, **ZS3** a **ZS4**. Do kombinace je zařadíme opět pomocí tlačítka [▶].

Vytvoření KZ3

Pro vytvoření poslední kombinace zatížení zvolíme jiný postup: pravým tlačítkem myši klikneme na položku *Kombinace zatížení* v navigátoru a v její místní nabídce vybereme funkci *Nová kombinace zatížení*...

RFEM			_			
🖃 👘 Uvodni priklad						
🗄 🗀 Údaje pro model						
🖃 🋅 Zatěžovací stavy a ko	nbina	ce				
🚊 🔄 Zatěžovací stavy						
ZS1: Vlastní tíha						
🛅 ZS2: Užitné zat	ížení					
🔤 ZS4: Imperfek	e prot	i+Y				
🚊 📪 Kombinace zatíže	ní					
🚞 KZ1: Užitné zat	íž 🐋	Upravit kombinace zatížení				
🔤 KZ2: Užitné zat	íż 🖓	Nová kombinace zatížení…				
🔤 🖓 Kombinace výsled	k 💾	Idi de tehullu	5			
🕀 🚞 Zatížení	-7					
🛅 Výsledky	*	Smazat všechny kombinace zatí	žení [Del		
🛅 Řezy	<u> </u>			_		
Oblasti průměrování						
🗄 🚞 Tiskové protokoly						
🗄 💼 Pomocné objekty						
🗄 📄 Přídavné moduly						
🖓 Data 🛛 🖀 Zobrazit 🛛 🔏 Pohle	ły					

Obr. 6.4: vytvoření KZ příkazem z místní nabídky v navigátoru

Jako *označení kombinace zatížení* uvedeme **Plné zatížení**. Tlačítkem [Přidat všechny zatěžovací stavy] můžeme převést do seznamu vpravo všechny čtyři zatěžovací stavy najednou.

Obr. 6.5: současné zařazení všech zatěžovacích stavů do kombinace

Vzhledem k tomu, že zatěžovacím stavům ZS2 a ZS3 byl přiřazen typ účinku *Užitné zatížení*, vstoupí do kombinace zatížení s dílčím součinitelem spolehlivosti 1,5. Pokud by byly kategorie odlišné, jeden ze zatěžovacích stavů by byl považován za hlavní a druhý za doprovodný účinek s menším součinitelem.

6.2 Vytvoření kombinace výsledků

Z výsledků daných tří kombinací zatížení vytvoříme obálku hodnot, která bude obsahovat kladné a záporné extrémní hodnoty.

Ze seznamu u rozbalovacího tlačítka [Upravit zatěžování] vybereme položku Nová kombinace výsledků....Zobrazí se opět dialog Zatěžování.

Obr. 6.6: dialog Zatěžování, záložka Kombinace výsledků

Jako *označení kombinace výsledků* vybereme ze seznamu položku **Rozhodující kombinace výsledků**.

₫√

Mají-li se kombinace zatížení zobrazit v sekci *Existující zatížení*, je třeba v seznamu v dolní části dialogu nastavit možnost *KZ Kombinace zatížení*. Kliknutím na tlačítko [Vybrat všechna zatížení v seznamu] pak označíme všechny tři kombinace zatížení.

V pravé dolní části dialogu vidíme, že pro superpozici je nastaven součinitel 1,00, což odpovídá našemu záměru spočítat extrémní hodnoty kombinací zatížení. Nyní ještě upravíme kombinační kritérium na **Stálé**; bude se tak vždy uvažovat alespoň jeden z účinků.

Tlačítkem [Přidat výběr s ,nebo'] převedeme dané tři kombinace zatížení do seznamu vpravo. Číslice 1 v posledním sloupci znamená, že všechny tři položky patří do stejné skupiny: nebudou se sčítat, ale naopak se bude jejich působení uvažovat jako alternativní.

Kombinační kritéria jsme tak kompletně definovali. Po kliknutí na [OK] můžeme vstupní údaje v daném stavu opět [Uložit].

60

7. Výpočet

7.1 Kontrola vstupních dat

Před spuštění výpočtu ještě provedeme kontrolu, zda ve vstupních datech nejsou chyby. Z hlavní nabídky

Nástroje \rightarrow Kontrola správnosti...

vyvoláme dialog Kontrola správnosti a v něm nastavíme:

Kontrola	Typ kontroly
📝 Údaje pro model	🔘 Normální
📝 Údaje pro zatížení	S varováním
Které zatěžovací stavy	Pouze statistika
Oktuální zatěžovací stav	Možnosti
🔘 Všechny	📝 Generovat síť prvků
	📝 Detekovat kolize těles

Obr. 7.1: dialog Kontrola správnosti

Klikneme na [OK]. Pokud nebudou odhaleny žádné nesrovnalosti, objeví se příslušné hlášení. Kromě toho se zobrazí bilance zadaných dat týkajících se konstrukce a zatížení.

Info	Údaje pro m	iodel Údaje	e pro zatížei	ní		
Rozm	ěry modelu			Hmotnost n	nodelu	
Δx	10.300	[m]		Plochy:	31000.0	[kg]
Δγ:	8.300	[m]		Tělesa:	0.0	[kg]
Δz	4.000	[m]		Pruty:	6897.2	[kg]
				Celkem:	37897.2	[kg]

Obr. 7.2: výsledek kontroly správnosti

Další nástroje pro kontrolu zadání máme k dispozici v hlavní nabídce

Nástroje \rightarrow Kontrola konstrukce,

které můžeme podle potřeby aplikovat na náš model konstrukce.

7.2 Vytvoření sítě konečných prvků

Vzhledem k tomu, že jsme v dialogu *Kontrola správnosti* označili možnost *Generovat síť prvků* (viz obr. 7.1), automaticky se vytvořila síť prvků, mezi nimiž je standardní vzdálenost 0,5 m. Tato síť se zobrazí v grafickém okně (předem nastavenou vzdálenost mezi prvky lze upravit z hlavní nabídky *Výpočet* \rightarrow *Nastavení sítě prvků*...).

Obr. 7.3: model s vygenerovanou sítí konečných prvků

7.3 Výpočet konstrukce

Výpočet nyní spustíme z hlavní nabídky

Výpočet ightarrow Spočítat vše

880 A

nebo pomocí příslušného tlačítka v panelu nástrojů.

Obr. 7.4: průběh výpočtu

8. Výsledky

8.1 Grafické zobrazení výsledků

Po výpočtu se v grafickém okně zobrazí deformace aktuálního zatěžovacího stavu. Vzhledem k tomu, že jako poslední jsme nastavili KV1, zobrazí se v pracovním okně maximální a minimální hodnoty této kombinace výsledků.

Obr. 8.1:grafické znázornění maximálních a minimálních deformací v případě kombinace výsledků KV1

Výběr zatěžovacích stavů a kombinací zatížení

Pomocí tlačítek [◀] a [▶] v panelu nástrojů (vpravo vedle seznamu zatěžovacích stavů) lze přepínat mezi výsledky jednotlivých zatěžovacích stavů, kombinací zatížení i kombinace výsledků, stejně jako jsme v předchozím kroku kontrolovali zadání zatěžovacích stavů. Konkrétní zatěžovací stav či kombinaci lze samozřejmě vybrat i v seznamu.

Obr. 8.2: seznam zatěžovacích stavů v panelu nástrojů

Výběr výsledků v navigátoru

Jednotlivé typy výsledků jsou přehledně seřazeny ve čtvrtém navigátoru, z něhož je můžeme zobrazit v grafickém okně. Pokud má být navigátor *Výsledky* přístupný, je třeba aktivovat zobrazení výsledků. Výsledky lze zapínat, příp. vypínat v navigátoru *Zobrazit* nebo pomocí tlačítka [Zapnout/vypnout výsledky] v panelu nástrojů.

<

۲

M

Před kategoriemi výsledků (např. *globální deformace, pruty, plochy, reakce*) se nacházejí zaškrtávací políčka. Pokud některé z nich aktivujeme, zobrazí se příslušné výsledky. Před položkami v rámci těchto kategorií jsou další políčka, pomocí nichž lze konkrétně nastavit, jaký typ výsledků si přejeme zobrazit.

Nyní si můžeme prolistovat jednotlivé zatěžovací stavy a kombinace zatížení. Různé kategorie výsledků umožňují uživateli prohlédnout si deformace, vnitřní síly na prutech či plochách, napětí nebo reakce.

Obr. 8.3: nastavení vnitřních sil na prutech a plochách v navigátoru Výsledky pro zobrazení v grafickém okně

Na obrázku výše jsou znázorněny vnitřní síly na prutech M_z a vnitřní síly na plochách m_y v případě KZ1. Vnitřní síly doporučujeme zobrazit na drátěném modelu konstrukce; nastavit ho lze pomocí vlevo znázorněného tlačítka.

Zobrazení hodnot

Přiřazení výsledků do barevných oblastí se řídí stupnicí barev nastavenou v řídicím panelu. Na určitých místech však budeme potřebovat zobrazit přesné číselné hodnoty. Pak stačí zaškrtnout zcela dole v navigátoru **Výsledky** položku *Hodnoty na plochách*. Pokud si přejeme zobrazit všechny hodnoty v uzlech sítě konečných prvků nebo v bodech rastru, je třeba navíc deaktivovat volbu *Extrémní hodnoty*.

<u>∧√</u>	B	C	D
Tabulka 4. Výsledky ní	Hodnota	Jednotky	Komentář
🗆 KZ1 - Užitné zatížení v poli 1			
 Součet zatížení ve směru X 	0.00	kN	
 Součet podporových sil ve směru X 	0.00	kN	
Součet zatížení ve směru Y	0.00	kN	
 Součet podporových sil ve směru Y 	0.00	kN	
 Součet zatížení ve směru Z 	641.89	kN	
 Součet podporových sil ve směru Z 	641.89	kN	Odchylka: 0.00 %
Maximální posun ve směru X	0.7	mm	Prut č. 6, x: 0.900 m
Maximální posun ve směru Y	-1.0	mm	Prut č. 3, x: 1.600 m
 Maximální posun ve směru Z 	5.0	mm	Uzel sítě prvků č. 61 (X:2.500, Y:2.500, Z:0.000 m)
Maximální posun (vektorový)	5.0	mm	Uzel sítě prvků č. 61 (X: 2.500, Y: 2.500, Z: 0.000 m)
Maximální pootočení okolo osy X	-1.6	mrad	Uzel sítě prvků č. 20 (X: 0.000, Y: 4.500, Z: 0.000 m)
Maximální pootočení okolo osy Y	-2.1	mrad	Uzel sítě prvků č. 22 (X: 0.500, Y: 0.000, Z: 0.000 m)
 Maximální pootočení okolo osy Z 	0.1	mrad	Prut č. 5, x: 0.000 m
Teorie výpočtu	II. řád		Teorie II. řádu (nelineární výpočet)
 Vztáhnout vnitřní síly na deformovaný systém pro 	Image: A state of the state		N, Vy, Vz, My, Mz, MT
 Zohlednit příznivé účinky tahových sil 	1		
 Zpětné dělení výsledků součinitelem kombinace zatíž 			
Redukce tuhosti součinitelem materiálu Gama-M	V		
 Počet přírůstků zatížení 	1		
- Počet iterací	3		

Obr. 8.4: momenty m_x v bodech rastru na stropní desce v pohledu ve směru osy Z (KZ1)

8.2 Tabulky výsledků

Výsledky si lze prohlédnout také v tabulkách.

Po výpočtu se automaticky zobrazí tabulky s výsledky. Stejně jako v případě číselných vstupů jsou i jednotlivé typy výsledků uspořádány do různých tabulek. Tabulka 4.0 *Souhrn* poskytuje celkový přehled o průběhu výpočtu a údaje řadí podle zatěžovacích stavů a kombinací zatížení.

Obr. 8.5: tabulka 4.0 Souhrn

Ostatní tabulky lze navolit pomocí záložek dole. Pokud v tabulce hledáme například vnitřní síly na stropní desce 1, otevřeme tabulku 4.14 *Plochy - základní vnitřní síly* a klikneme na příslušnou plochu myší v grafickém okně (při průhledném zobrazení modelu konstrukce je výběr ploch snazší). V tabulce výsledků se okamžitě vyhledají základní vnitřní síly vybrané plochy. Aktuální bod rastru, tzn. poloha kurzoru v řádku tabulky, se v grafickém okně vyznačí šipkou.

Ing. Software

Obr. 8.6: vnitřní síly na plochách v tabulce 4.14 a vyznačení aktuálního bodu rastru v modelu konstrukce

Nejen v grafickém okně, ale i v tabulkách lze pomocí tlačítek [4] a [>] listovat jednotlivými zatěžovacími stavy nebo lze ve výběrovém seznamu zvolit zatěžovací stav, jehož výsledky si chceme prohlédnout.

< >

8.3 Filtrování výsledků

Pokud při zobrazování a vyhodnocování výsledků chceme zachovat přehlednost dat, můžeme využít řadu funkcí pro filtrování údajů, které nám program nabízí. Tyto nástroje můžeme použít i při zpracování naší úlohy.

8.3.1 Pohledy

Výřezy a skupiny lze použít jako takzvané pohledy k vyhodnocení výsledků.

Zobrazení výsledků pro betonové sloupy

V navigátoru nastavíme záložku *Pohledy*. Z výřezů a skupin v sekci *Viditelnosti*, které RFEM *vygeneroval* na základě zadaných údajů, označíme následující položky:

- Pruty dle typu:
 - Pruty dle průřezu: Č. 2 Obdélník 300/300

Nosník

Pomocí tlačítka [Zobrazit průnik aktivních viditelností] dále vytvoříme výřez, který splňuje obě stanovené vlastnosti.

Obr. 8.7: momenty My na betonových sloupech v nadvýšení

Zobrazí se oba betonové sloupy s výslednými hodnotami. Ostatní části konstrukce se zobrazí pouze na pozadí a bez výsledných hodnot.

Úprava faktoru nadvýšení

Pokud si chceme průběh vnitřních sil na renderovaném modelu konstrukce lépe prohlédnout, můžeme v řídicím panelu nastavit nadvýšení v záložce *Faktory zobrazení*. U *průběhů* na prutech upravíme faktor na **2** (viz obrázek výše).

Zobrazení výsledků pro stropní desku

Stejně tak lze v navigátoru *Pohledy* nastavit filtrování výsledků pro plochy. Zrušíme označení položek *Pruty dle typu* a *Pruty dle průřezu* a místo toho vybereme položku *Plochy dle tloušťky*. V ní označíme podpoložku *20 cm*.

Obr. 8.8: deformace stropu

1

Jak jsme již zmínili, v navigátoru *Výsledky* (viz obr. 8.3, strana 44) můžeme přepínat mezi zobrazením různých typů výsledků. Na obrázku výše je znázorněn průběh posouvajících sil v_y.

8.3.2 Výsledky na objektech

Další možnost filtrování nabízí poslední záložka řídicího panelu: můžeme v ní zadat čísla právě těch prutů nebo ploch, jejichž výsledky si přejeme v grafickém okně zobrazit. Na rozdíl od funkce výřezu se zobrazí celý model konstrukce.

Nejdříve zrušíme v navigátoru Pohledy označení volby Uživatelské / generované.

Viditelnosti	
<u> </u>	
Uživatelské / generované:	
🖃 🔲 🚞 Uživatelské	-
🔄 🦳 🚞 Skupina 1	
📩 🗐 🧰 Generované	
🐵 🔲 🚞 Linie dle typu	
🖶 🔲 🚞 Plochy dle excentricity	-
x x x x x 🖶 🖶 🖶	
Nové objekty přidávat do viditelnosti:	
· · · · · · · · · · · · · · · · · · ·	

Obr. 8.9: obnovení celkového náhledu na konstrukci v navigátoru Pohledy

8 Výsledky

1

Kliknutím myší vybereme plochu 1. Poté v řídicím panelu přepneme do záložky *Filtry* a zkontrolujeme, zda je v ní aktivováno výběrové políčko *Plochy*.

Pokud klikneme na tlačítko [Načíst z výběru], číslo vybrané plochy se vyplní do zadávacího políčka nahoře. V grafickém okně se nyní zobrazí výsledky pro levou plochu.

Obr. 8.10: průběh posouvajících sil na levé ploše

Místní nabídka prutu

8.4 Zobrazení průběhu výsledků

Pokud si chce uživatel prohlédnout detailní výsledky určitého objektu (např. linie, prutu, liniové podpory nebo řezu), nabízí mu program diagram výsledků. Tuto funkci použijeme k vyhodnocení průběhu výsledků na deskovém nosníku.

Pravým tlačítkem myši klikneme na prut č. 2 (v případě problému vypneme zobrazení výsledků na plochách) a následně vybereme v místní nabídce položku Průběhy výsledků....

Otevře se nové okno, v němž jsou znázorněny průběhy výsledků na žebru.

Obr. 8.11: zobrazení průběhu výsledků v průvlaku

V navigátoru označíme globální deformace u a dále vnitřní síly M_y a V_L . Poslední z nich představují podélnou smykovou sílu mezi plochou a prutem. Síly se zobrazí, pokud je v panelu nástrojů aktivováno tlačítko [Žebro]. Pokud toto tlačítko zapneme a vypneme, bude patrný rozdíl mezi prostými vnitřními silami na prutu a vnitřními silami na žebru s příspěvkem ploch.

Velikost zobrazení průběhu výsledků můžeme upravovat pomocí tlačítek [+] a [-].

Také v tomto okně můžeme listovat jednotlivými zatěžovacími stavy pomocí tlačítek [◀] a [▶] nebo můžeme určitý zatěžovací stav nastavit ve výběrovém seznamu.

Funkci pro zobrazení průběhu výsledků ukončíme zavřením daného okna.

9. Dokumentace

9.1 Vytvoření výstupního protokolu

Objemné výsledky výpočtu konstrukce metodou konečných prvků nedoporučujeme poslat přímo na tiskárnu. Ze vstupních a výstupních dat se v RFEMu nejdříve vytvoří náhled pro tisk, takzvaný výstupní protokol. Po shlédnutí tohoto náhledu může uživatel rozhodnout, které údaje se vytisknou. Do protokolu lze zařadit i grafická zobrazení, komentáře nebo naskenované obrázky.

Výstupní protokol otevřeme z hlavní nabídky

Soubor \rightarrow Otevřít protokol...

nebo kliknutím na příslušné tlačítko v panelu nástrojů. Otevře se dialog, v němž můžeme vybrat určitý vzorový protokol jako *předlohu*.

Nový tiskový protokol	× X <.
C. Označení Vstupní data a redukované výsledky	
Převzít nastavení z předlohy 1 - Vstupní data a redukované výsledky	• 🎦 🖻
ОК	Storno

Obr. 9.1: dialog Nový protokol

V našem případě převezmeme nastavení z předlohy 1 - *Vstupní data a redukované výsledky*. Po kliknutí na [OK] se vytvoří náhled pro tisk.

RFEM - úvodní příklad © 2011 Ing. Software Dlubal s.r.o.

9.2 Úprava výstupního protokolu

Také výstupní protokol má navigátor, který obsahuje všechny vybrané kapitoly. Pokud klikneme na některou položku v navigátoru, zobrazí se po pravé straně její obsah.

Daný obsah můžeme podrobně upravovat. V našem případě pozměníme nastavení u vnitřních sil na prutech: v kapitole *Výsledky-kombinace výsledků* klikneme pravým tlačítkem myši na položku *Pruty-vnitřní síly* a v místní nabídce zvolíme *Výběr...*.

Obr. 9.3: místní nabídka Pruty - vnitřní síly

Otevře se dialog s možností podrobného výběru výsledků pro pruty u kombinace výsledků.

Program / Moduly	Globální výběr Údaje	pro model Zatížení Výsla	edky ZS/KZ	Z Výsledky pro KV	
RFEM	Zobrazit kombinace za	tížení - tabulky			
	Vše				
	Vubrané				
	U vybrane	-61			
	Zobrazit tabulky				
	Zobrazit	Tabulka	Všechny	Výběr čísel (např. '1-4,8')	
	4.1 Uzly - poo	dporové síly	. 🗹	Vše	
	4.2 Uzly - def	omace	2	Vše	
	4.3 Linie - po	dporové síly	. 🗹	Vše	
	4.4 Pruty - de	formace	. 🗹	Vše	_
	4.5 Pruty - glo	itřní sílv		Vše	_
	4.7 Pruty - ko	ntaktní sílv		Vše	
	Detaily Vaitžeí cíly na nauta	-		×	
	Detaily - vnitrni sily po prute	cn 🗖			
	Zobrazit	Max./min. vnitřní síly			_
	Hodpoty v uzlech	I N M	т.		_
	Hodnotu dělení		'		
	Finderholdy determine	Vy VM	У		
	Extremni noanoty	Vz M	z		
					-
					_
			OK	Storno	_
	4./4 Plochy	srovnavaci napeti Kach	1.171	Vse	_
Zobrazit	4.25 Plochy	základní poměrná přetvoře	n 🖸	Vše	
Titulní stranu					
Index			200	orazit prisiusejici zatezovaci stavy	
🕼 Into obrázky					

Obr. 9.4: zúžení výběru výstupních dat v dialogu Výběr protokolu

9 Dokumentace

....

Umístíme kurzor myši do řádku *4.6 Pruty - vnitřní síly* ve sloupci *Tabulka*. Tím se zpřístupní tlačítko [...], jímž otevřeme dialog *Detaily - Vnitřní síly po prutech*. Zde omezíme zobrazení výsledků ve výstupu pouze na **extrémní hodnoty** vnitřních sil na prutech **N**, **V**_z a **M**_y.

Jakmile ukončíme oba dialogy tlačítkem [OK], tabulka vnitřních sil v protokolu se aktualizuje. Stejným způsobem lze pro tisk upravovat jakoukoli kapitolu.

Pokud chceme změnit polohu kapitoly v protokolu, stačí ji myší přesunout na požadované místo (Drag & Drop). Odstranit kapitolu z protokolu lze příslušným příkazem v místní nabídce (viz obr. 9.3) nebo klávesou [Delete].

9.3 Včlenění obrázků do protokolu

Zpravidla se pro názornost zařazují do dokumentace grafická zobrazení.

Tisk grafického znázornění deformace

Nejdříve minimalizujeme okno výstupního protokolu kliknutím na [_] a vrátíme se do pracovního okna RFEMu. Protokol se nyní zobrazí jako samostatná aplikace v panelu úloh.

Na obrazovce nastavíme *deformace* u **KZ1 - užitné zatížení v poli 1** a zobrazení si podle potřeby uspořádáme.

Vzhledem k tomu, že deformace jsou lépe patrné na *drátěném modelu*, vybereme tento typ zobrazení.

Pokud jsme tak dosud neučinili, nastavíme znovu v řídicím panelu v záložce *Filtry* zobrazení výsledků na *všech* plochách (viz obr. 8.10, strana 49).

Tisk grafiky		×			
Obecné Možnosti Stupnice barev					
Okno obrázku	Tisknout okno	Velikost obrázku			
Přímý tisk	Pouze aktivní	🔘 Jako na obrazovce			
Tisk do protokolu:	🔿 Více	Celé okno obrázku			
Kop írovat do schránky	🔘 Hromadný tisk	⊙Vměřítku 1: 100 👻			
Velikost okna obrázku a natočení	Možnosti				
	Vitiskou t hodotu výsledků				
	v požadované vzdálenosti x				
Přes celou výšku stránky	Zamknout obrázek (bez aktualizace)				
Natočení: 0 (*)					
Nadpis obrázku					
Detormace u, K∠1: Užitné zatižení v poli 1, lzom	letne				
		OK ∣ ▼ Stomo			

Obr. 9.5: deformace v případě KZ1

Obrázek nyní zařadíme do protokolu příkazem v hlavní nabídce

Soubor \rightarrow Tisk...

nebo pomocí příslušného tlačítka v panelu nástrojů.

1

V dialogu *Tisk grafiky* nastavíme parametry pro tisk tak, jak vidíme na následujícím obrázku. V záložkách *Možnosti* a *Stupnice barev* můžeme ponechat předem nastavené zadání beze změny.

Obr. 9.6: dialog Tisk grafiky

Po kliknutí na [OK] se grafické zobrazení deformací zařadí do protokolu. Obrázek se včlení do protokolu na konci kapitoly *Výsledky - zatěžovací stavy, kombinace zatížení* (pokud se protokol neotevře automaticky, maximalizujeme ho z panelu úloh).

Obr. 9.7: grafické zobrazení deformací v protokolu

Tisk protokolu

B

Jakmile je protokol hotov, můžeme ho tlačítkem [Tisk] poslat na tiskárnu.

9 Dokumentace

Integrovaná tiskárna pro tisk do formátu PDF umožňuje uložit protokol jako PDF soubor. Danou funkci máme k dispozici v hlavní nabídce protokolu

Soubor \rightarrow Export do PDF....

Otevře se standardní dialog Windows *Uložit jako*, v němž zadáme místo uložení a název souboru.

Uložit

Po kliknutí na tlačítko [Uložit] se vytvoří PDF soubor se záložkami, pomocí nichž se lze snáze orientovat v digitálním dokumentu.

Obr. 9.8: protokol jako PDF soubor se záložkami

10. Na závěr

Příklad jsme tak kompletně dokončili. Doufáme, že Vám tento krátký úvod do programu pomůže snáze si osvojit práci s RFEMem a také že jsme ve Vás probudili zvědavost, jaké další, dosud neznámé funkce Vám náš program nabízí. Podrobný popis programu Vám předkládáme v uživatelské příručce k RFEMu, kterou si lze stáhnout na naší webové adrese http://www.dlubal.cz/Stahnout-manualy.aspx. Najdete tu také příklad pro pokročilejší uživatele, na kterém si lze procvičit další funkce programu.

Z hlavní nabídky programu **Nápověda** nebo stisknutím klávesy [F1] můžeme vyvolat online nápovědu programu RFEM, v které lze vyhledat různé informace a pojmy. Nápověda vychází z příručky, bývá však aktuálnější než tištěná verze.

S dotazy se samozřejmě můžete obracet i na naši hotline podporu prostřednictvím emailu nebo faxu. Další možností je podívat se na našich webových stránkách www.dlubal.cz do rubriky FAQ nebo do uživatelského fóra.

Tento příklad lze použít i v demoverzích přídavných modulů, např. pro posouzení ocelových a železobetonových konstrukcí (RF-STEEL Pruty, RF-CONCRETE Plochy/Pruty, RF-STABILITY atd.). Pouze nahradíme profily přípustnými typy průřezů, např. v modulu RF-STEEL EC3 použijeme pro nosník profil IPE 300. Posouzení tak bude možné provést a Vy se dobře seznámíte s funkcionalitou daných modulů. Výsledky posouzení lze jako obvykle vyhodnotit v pracovním okně RFEMu.